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Translation to linear maps

A diagram with n inputs and m outputs is translated to a linear
map c?" - C?",

>{ ,_>‘0...0><0...0|+eia’1...1><1...1|
X AN e = =)=

—o—— = [0 + [-)X1]

Sequential composition is interpreted as matrix multiplication, and
parallel composition as the Kronecker product
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Equations

where addition is modulo 2.

The equations identify linear maps up to a global non-zero scalar!!!
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From quantum circuits to ZX

mage credit: John van de Wetering
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Example: GHZ state
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From measurement patterns to ZX

A measurement pattern® is a sequence of commands acting on
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2Danos, Kashefi and Panangaden: The Measurement Calculus, 2007.
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From measurement patterns to ZX

A measurement pattern® is a sequence of commands acting on
qubits:

» N; — prepare a qubit in state |+),
» E,m — entangle a pair of qubits (apply the CZ-gate),
> Mi"a — apply a projective measurement,

» X3 or Z5 — apply Pauli-X or Pauli-Z operator if s =1 (do
nothing if s = 0)

2Danos, Kashefi and Panangaden: The Measurement Calculus, 2007.
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A logician's view

The ZX-calculus is:
» Sound: If two diagrams are equal, then the corresponding
linear maps are equal,
» Universal: Every linear map C?" — C?” can be represented as
a diagram,
» Complete: If two linear maps are equal, then the
corresponding diagrams are equal3.

3This requires adding some rules to the ones we've seen.
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ZX-Calculus, arXiv:2305.02669, 2023
» Circuit optimisation
» Kissinger and van de Wetering: Reducing the number of
non-Clifford gates in quantum circuits, Phys. Rev. A, 2020
» Staudacher, Schmid, Zeiher, Wille and Kranzimiiller:
Multi-controlled phase gate synthesis with ZX-calculus applied
to neutral atom hardware, EPTCS, 2024
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fault-tolerant quantum computing, arXiv:2510.06890, 2025

P Barren plateau analysis in quantum machine learning
» Wang, Yeung and Koch: Differentiating and Integrating ZX
Diagrams with Applications to Quantum Machine Learning,
Quantum 2024
» Computational quantum chemistry

» Cowtan, Dilkes, Duncan, Simmons and Sivarajah: Phase
Gadget Synthesis for Shallow Circuits, EPTCS 2020
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Further reading

» ZX-website: zxcalculus.com

» John van de Wetering: ZX-calculus for the working quantum
computer scientist, arXiv:2012.13966

» Bob Coecke and Aleks Kissinger: Picturing Quantum
Processes, CUP 2017
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Thank you for your attention!
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