

An introduction to the ZX-calculus

Leo Lobski

UCL, PPLV group

28 October 2025
QInfo seminar

Outline

Process theories

The calculus

From quantum circuits to ZX

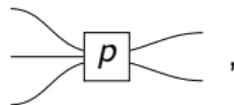
From MBQC to ZX

A logician's view

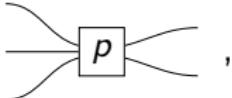
Applications

Process theories

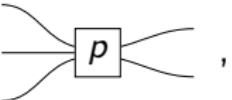
- ▶ A *process* is drawn as a box:



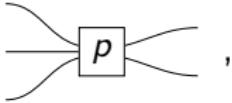
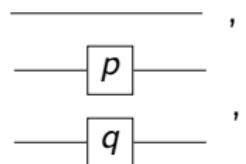
Process theories

- ▶ A *process* is drawn as a box:  ,
- ▶ There is a special process that “does nothing”: _____ ,

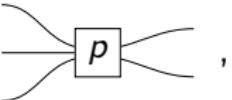
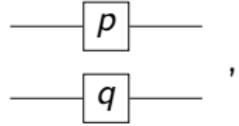
Process theories

- ▶ A *process* is drawn as a box:  ,
- ▶ There is a special process that “does nothing”: _____ ,
- ▶ Two processes can be *composed*

Process theories

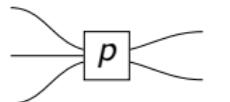
- ▶ A *process* is drawn as a box:  ,
- ▶ There is a special process that “does nothing”: _____ ,
- ▶ Two processes can be *composed* (1) in parallel:  ,

Process theories

- ▶ A *process* is drawn as a box:  ,
- ▶ There is a special process that “does nothing”: ,
- ▶ Two processes can be *composed* (1) in parallel:  ,
and (2) in sequence: ,

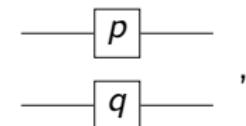
Process theories

- ▶ A *process* is drawn as a box:



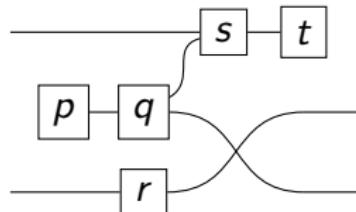
- ▶ There is a special process that “does nothing”: _____,

- ▶ Two processes can be *composed* (1) in parallel: _____,



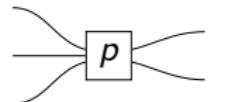
- and (2) in sequence: _____, _____ , _____ , _____

Example of a composite process:



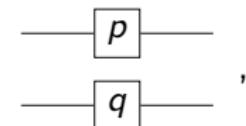
Process theories

- ▶ A *process* is drawn as a box:



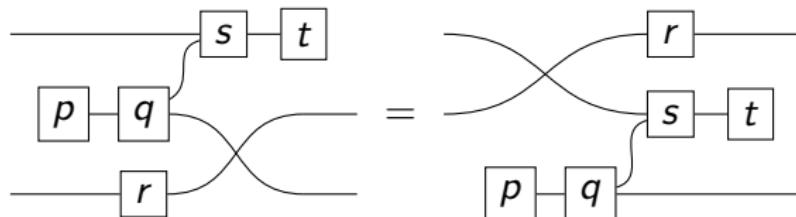
- ▶ There is a special process that “does nothing”: _____,

- ▶ Two processes can be *composed* (1) in parallel: _____,

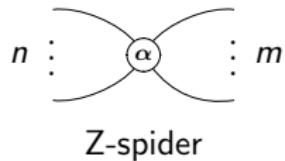
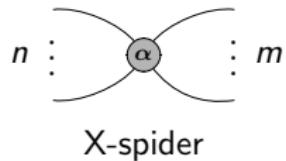


- and (2) in sequence: _____ ,

Example of a composite process:



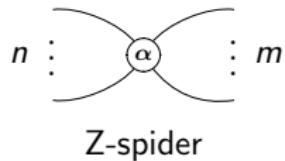
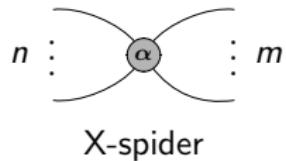
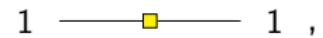
Generators



1 ————— ————— 1 ,

Hadamard gate

Generators



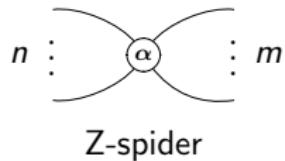
Z-spider

X-spider

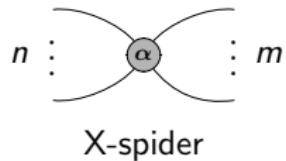
Hadamard gate

where $\alpha \in [0, 2\pi)$ is called a *phase*. Example:

Generators



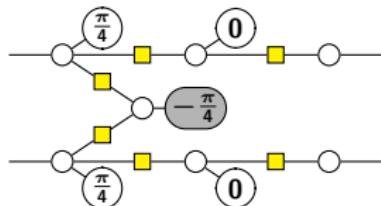
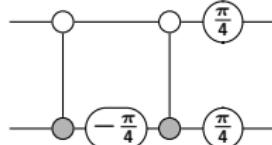
Z-spider



X-spider

Hadamard gate

where $\alpha \in [0, 2\pi)$ is called a *phase*. Example:



Translation to linear maps

A diagram with n inputs and m outputs is translated to a linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$,

Translation to linear maps

A diagram with n inputs and m outputs is translated to a linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$,

$$\begin{array}{c} \vdots \quad \vdots \\ \text{Diagram: } \alpha \\ \vdots \quad \vdots \end{array} \mapsto |0 \cdots 0\rangle\langle 0 \cdots 0| + e^{i\alpha} |1 \cdots 1\rangle\langle 1 \cdots 1|$$

Translation to linear maps

A diagram with n inputs and m outputs is translated to a linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$,

$$\begin{array}{c} \vdots \quad \alpha \quad \vdots \\ \text{Diagram: two lines entering a circle labeled } \alpha, \text{ which then splits into two lines.} \\ \vdots \quad \alpha \quad \vdots \end{array} \mapsto |0 \cdots 0\rangle\langle 0 \cdots 0| + e^{i\alpha} |1 \cdots 1\rangle\langle 1 \cdots 1|$$
$$\begin{array}{c} \vdots \quad \alpha \quad \vdots \\ \text{Diagram: two lines entering a circle labeled } \alpha, \text{ which is shaded gray, then splits into two lines.} \\ \vdots \quad \alpha \quad \vdots \end{array} \mapsto |+ \cdots +\rangle\langle + \cdots +| + e^{i\alpha} |- \cdots -\rangle\langle - \cdots -|$$

Translation to linear maps

A diagram with n inputs and m outputs is translated to a linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$,

$$\begin{array}{c} \vdots \quad \alpha \quad \vdots \\ \text{Diagram: two lines entering a circle labeled } \alpha, \text{ which then splits into two lines.} \\ \vdots \quad \alpha \quad \vdots \\ \text{Diagram: two lines entering a circle labeled } \alpha, \text{ which then splits into two lines.} \\ \hline \text{---} \quad \text{---} \quad \text{---} \\ \text{Diagram: a single horizontal line with a yellow square on it.} \end{array} \mapsto \begin{array}{l} |0 \cdots 0\rangle\langle 0 \cdots 0| + e^{i\alpha} |1 \cdots 1\rangle\langle 1 \cdots 1| \\ |+\cdots+\rangle\langle +\cdots+| + e^{i\alpha} |- \cdots -\rangle\langle - \cdots -| \\ |+\rangle\langle 0| + |-\rangle\langle 1| \end{array}$$

Translation to linear maps

A diagram with n inputs and m outputs is translated to a linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$,

$$\begin{array}{c} \vdots \quad \alpha \quad \vdots \quad \mapsto |0 \cdots 0\rangle\langle 0 \cdots 0| + e^{i\alpha} |1 \cdots 1\rangle\langle 1 \cdots 1| \\ \vdots \quad \alpha \quad \vdots \quad \mapsto |+\cdots+\rangle\langle +\cdots+| + e^{i\alpha} |- \cdots -\rangle\langle - \cdots -| \\ \hline \text{---} \quad \text{---} \quad \mapsto |+\rangle\langle 0| + |-\rangle\langle 1| \end{array}$$

Sequential composition is interpreted as matrix multiplication, and parallel composition as the Kronecker product

Examples

Examples

$$\bullet \longrightarrow \mapsto |0\rangle$$

Examples

$$\begin{array}{l} \text{---} \mapsto |0\rangle \\ \text{---} \mapsto \end{array}$$

○

π

Examples

$$\begin{aligned} \bullet &\longrightarrow |0\rangle \\ \textcircled{\pi} &\longrightarrow |1\rangle \end{aligned}$$

Examples

 $\mapsto |0\rangle$
 $\mapsto |1\rangle$
 \mapsto

Examples

$$\begin{aligned} \bullet &\longrightarrow |0\rangle \\ \textcircled{\pi} &\longrightarrow |1\rangle \\ \circ &\longrightarrow |+\rangle \end{aligned}$$

Examples

\bullet $\mapsto |0\rangle$
 $\circled{\pi}$ $\mapsto |1\rangle$
 \circ $\mapsto |+\rangle$
 $\circled{\pi}$ \mapsto

Examples

$$\bullet \longrightarrow \mapsto |0\rangle$$

$$\circlearrowleft \pi \longrightarrow \mapsto |1\rangle$$

$$\circlearrowleft \longrightarrow \mapsto |+\rangle$$

$$\circlearrowleft \pi \longrightarrow \mapsto |-\rangle$$

Examples

$$\begin{array}{l} \text{---} \rightarrow |0\rangle \\ \text{---} \rightarrow |1\rangle \\ \text{---} \rightarrow |+\rangle \\ \text{---} \rightarrow |-\rangle \\ \text{---} \text{---} \rightarrow \end{array}$$

Examples

$$\begin{aligned} \bullet \text{---} &\mapsto |0\rangle \\ \text{---} \bullet &\mapsto |1\rangle \\ \circ \text{---} &\mapsto |+\rangle \\ \text{---} \circ &\mapsto |-\rangle \\ \text{---} \bullet &\quad \bullet \text{---} \mapsto |0\rangle\langle 0| \end{aligned}$$

Examples

$$\begin{array}{ll} \text{---} \bullet \longrightarrow & |0\rangle \\ \text{---} \circlearrowleft \pi \longrightarrow & |1\rangle \\ \text{---} \circlearrowleft \bullet \longrightarrow & |+\rangle \\ \text{---} \circlearrowleft \circlearrowleft \pi \longrightarrow & |-\rangle \\ \text{---} \bullet \quad \text{---} \bullet \longrightarrow & |0\rangle\langle 0| \\ \text{---} \circlearrowleft \pi \quad \text{---} \bullet \longrightarrow & \end{array}$$

Examples

$$\begin{array}{ll} \bullet \longrightarrow \mapsto |0\rangle \\ (\pi) \bullet \longrightarrow \mapsto |1\rangle \\ \circ \longrightarrow \mapsto |+\rangle \\ (\pi) \circ \longrightarrow \mapsto |-\rangle \\ \bullet \quad \bullet \longrightarrow \mapsto |0\rangle\langle 0| \\ (\pi) \quad \bullet \longrightarrow \mapsto |0\rangle\langle -| \end{array}$$

Examples

$$\begin{array}{ll} \bullet \longrightarrow & \mapsto |0\rangle \\ \circlearrowleft \pi \bullet \longrightarrow & \mapsto |1\rangle \\ \circlearrowleft \bullet \longrightarrow & \mapsto |+\rangle \\ \circlearrowleft \pi \bullet \longrightarrow & \mapsto |-\rangle \\ \bullet \circlearrowleft \bullet \longrightarrow & \mapsto |0\rangle\langle 0| \\ \bullet \circlearrowleft \pi \bullet \longrightarrow & \mapsto |0\rangle\langle -| \\ \bullet \circlearrowleft \alpha \bullet \longrightarrow & \mapsto \end{array}$$

Examples

$$\begin{aligned} \bullet \text{---} &\mapsto |0\rangle \\ \text{---} \circled{\pi} \text{---} &\mapsto |1\rangle \\ \text{---} \circ \text{---} &\mapsto |+\rangle \\ \text{---} \circled{\pi} \text{---} &\mapsto |-\rangle \\ \text{---} \bullet \text{---} \bullet \text{---} &\mapsto |0\rangle\langle 0| \\ \text{---} \circled{\pi} \text{---} \bullet \text{---} &\mapsto |0\rangle\langle -| \\ \text{---} \circled{\alpha} \text{---} &\mapsto |0\rangle\langle 0| + e^{i\alpha} |1\rangle\langle 1| \end{aligned}$$

Examples

- $\mapsto |0\rangle$
- $\mapsto |1\rangle$
- $\mapsto |+\rangle$
- $\mapsto |-\rangle$
- ●— $\mapsto |0\rangle\langle 0|$
- ●— $\mapsto |0\rangle\langle -|$
- $\mapsto |0\rangle\langle 0| + e^{i\alpha} |1\rangle\langle 1|$
- \mapsto

Examples

- → $|0\rangle$
- π → $|1\rangle$
- → $|+\rangle$
- π → $|-\rangle$
- —● → $|0\rangle\langle 0|$
- π —● → $|0\rangle\langle -|$
- α —● → $|0\rangle\langle 0| + e^{i\alpha} |1\rangle\langle 1|$
- π —● → $|0\rangle\langle 0| - |1\rangle\langle 1|$

Examples

- → $|0\rangle$
- (π) → $|1\rangle$
- → $|+\rangle$
- (π) → $|-\rangle$
- ● → $|0\rangle\langle 0|$
- (π) ● → $|0\rangle\langle -|$
- (α) → $|0\rangle\langle 0| + e^{i\alpha}|1\rangle\langle 1|$
- (π) → $|0\rangle\langle 0| - |1\rangle\langle 1|$
- (π) →

Examples

- → $|0\rangle$
- (π) → $|1\rangle$
- → $|+\rangle$
- (π) → $|-\rangle$
- ● → $|0\rangle\langle 0|$
- (π) ● → $|0\rangle\langle -|$
- (α) → $|0\rangle\langle 0| + e^{i\alpha} |1\rangle\langle 1|$
- (π) → $|0\rangle\langle 0| - |1\rangle\langle 1|$
- (π) → $|+\rangle\langle +| - |-\rangle\langle -|$

Equations

$$\begin{array}{c} \text{Diagram showing two nodes } \alpha \text{ and } \beta \text{ with multiple outgoing edges.} \\ \vdots \\ \alpha \\ \vdots \\ \beta \end{array} \stackrel{(\mathbf{f})}{=} \begin{array}{c} \text{Diagram showing a single node } \alpha + \beta \text{ with multiple outgoing edges.} \\ \vdots \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node } \alpha \text{ connected to four yellow squares.} \\ \vdots \\ \text{Yellow square} \\ \vdots \\ \text{Yellow square} \end{array} \stackrel{(\mathbf{h})}{=} \begin{array}{c} \text{Diagram showing a single node } \alpha \text{ with multiple outgoing edges.} \\ \vdots \end{array}$$

$$\begin{array}{c} \text{Diagram showing a single node with a single outgoing edge.} \\ \text{---} \end{array} \stackrel{(\mathbf{i1})}{=} \begin{array}{c} \text{Diagram showing a single node with a single outgoing edge.} \\ \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node } \alpha \text{ with two nodes } \pi \text{ on its left.} \\ \vdots \\ \pi \\ \text{---} \end{array} \stackrel{(\pi)}{=} \begin{array}{c} \text{Diagram showing a central node } -\alpha \text{ with three nodes } \pi \text{ on its right.} \\ \vdots \\ \pi \\ \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node } \alpha \text{ with three nodes on its left.} \\ \vdots \\ \text{---} \end{array} \stackrel{(\mathbf{c})}{=} \begin{array}{c} \text{Diagram showing three nodes on the left.} \\ \vdots \\ \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a single node with a single outgoing edge.} \\ \text{---} \end{array} \stackrel{(\mathbf{d})}{=} \begin{array}{c} \text{Diagram showing a central node with three nodes on its left.} \\ \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node with two nodes on its left and two nodes on its right.} \\ \text{---} \end{array} \stackrel{(\mathbf{b})}{=} \begin{array}{c} \text{Diagram showing a central node with two nodes on its left and two nodes on its right.} \\ \text{---} \end{array}$$

where addition is modulo 2π .

Equations

$$\begin{array}{c} \text{Diagram showing two nodes } \alpha \text{ and } \beta \text{ with multiple outgoing edges.} \\ \vdots \\ \alpha \\ \vdots \\ \beta \end{array} \stackrel{(f)}{=} \begin{array}{c} \text{Diagram showing a single node } \alpha + \beta \text{ with multiple outgoing edges.} \\ \vdots \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node } \alpha \text{ connected to four yellow squares.} \\ \vdots \\ \text{Yellow square} \\ \vdots \\ \text{Yellow square} \end{array} \stackrel{(h)}{=} \begin{array}{c} \text{Diagram showing a central node } \alpha \text{ with multiple outgoing edges.} \\ \vdots \end{array}$$

$$\begin{array}{c} \text{Diagram showing a single node with one outgoing edge.} \\ \text{---} \end{array} \stackrel{(i1)}{=} \begin{array}{c} \text{Diagram showing a single node with one outgoing edge.} \\ \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a single node with one outgoing edge.} \\ \text{---} \end{array} \stackrel{(cc)}{=} \begin{array}{c} \text{Diagram showing a single node with one outgoing edge.} \\ \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node } \alpha \text{ with two nodes } \pi \text{ attached.} \\ \vdots \\ \pi \\ \alpha \\ \vdots \\ \pi \end{array} \stackrel{(\pi)}{=} \begin{array}{c} \text{Diagram showing a central node } -\alpha \text{ with three nodes } \pi \text{ attached.} \\ \vdots \\ \pi \\ \pi \\ \pi \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node } \alpha \text{ with three outgoing edges.} \\ \vdots \end{array} \stackrel{(c)}{=} \begin{array}{c} \text{Diagram showing three separate nodes.} \\ \text{---} \\ \text{---} \\ \vdots \\ \text{---} \end{array}$$

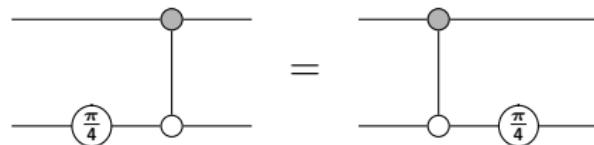
$$\begin{array}{c} \text{Diagram showing a single node with one outgoing edge.} \\ \text{---} \end{array} \stackrel{(d)}{=} \begin{array}{c} \text{Diagram showing a sequence of nodes: } \text{---} \xrightarrow{\pi/2} \text{---} \xrightarrow{\pi/2} \text{---} \xrightarrow{\pi/2} \text{---} \end{array}$$

$$\begin{array}{c} \text{Diagram showing a central node with two outgoing edges.} \\ \text{---} \end{array} \stackrel{(b)}{=} \begin{array}{c} \text{Diagram showing a sequence of nodes: } \text{---} \xrightarrow{\text{---}} \text{---} \xrightarrow{\text{---}} \text{---} \end{array}$$

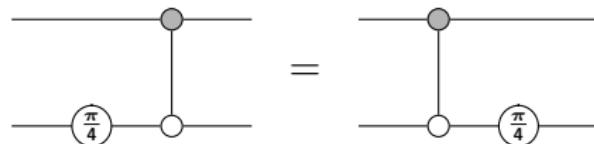
where addition is modulo 2π .

The equations identify linear maps *up to a global non-zero scalar!!!*

Example

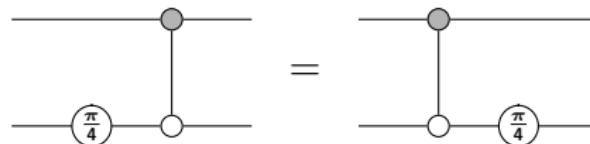


Example

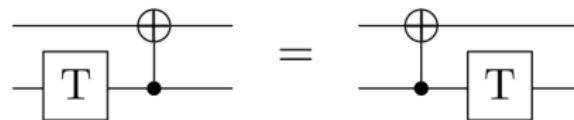


Which we recognise as

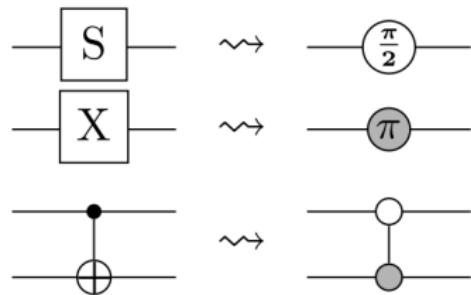
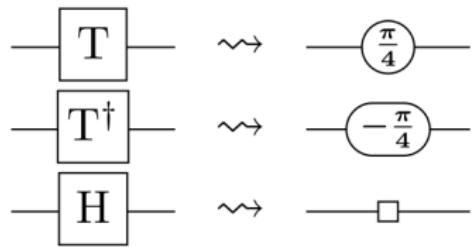
Example



Which we recognise as



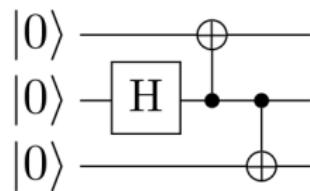
From quantum circuits to ZX



1

¹Image credit: John van de Wetering

Example: GHZ state



From measurement patterns to ZX

A *measurement pattern*² is a sequence of commands acting on qubits:

²Danos, Kashefi and Panangaden: *The Measurement Calculus*, 2007.

From measurement patterns to ZX

A *measurement pattern*² is a sequence of commands acting on qubits:

- ▶ N_j – prepare a qubit in state $|+\rangle$,

²Danos, Kashefi and Panangaden: *The Measurement Calculus*, 2007.

From measurement patterns to ZX

A *measurement pattern*² is a sequence of commands acting on qubits:

- ▶ N_j – prepare a qubit in state $|+\rangle$,
- ▶ E_{nm} – entangle a pair of qubits (apply the CZ-gate),

²Danos, Kashefi and Panangaden: *The Measurement Calculus*, 2007.

From measurement patterns to ZX

A *measurement pattern*² is a sequence of commands acting on qubits:

- ▶ N_j – prepare a qubit in state $|+\rangle$,
- ▶ E_{nm} – entangle a pair of qubits (apply the CZ-gate),
- ▶ $M_k^{\lambda, \alpha}$ – apply a projective measurement,

²Danos, Kashefi and Panangaden: *The Measurement Calculus*, 2007.

From measurement patterns to ZX

A *measurement pattern*² is a sequence of commands acting on qubits:

- ▶ N_j – prepare a qubit in state $|+\rangle$,
- ▶ E_{nm} – entangle a pair of qubits (apply the CZ-gate),
- ▶ $M_k^{\lambda, \alpha}$ – apply a projective measurement,
- ▶ X_n^s or Z_n^s – apply Pauli-X or Pauli-Z operator if $s = 1$ (do nothing if $s = 0$)

²Danos, Kashefi and Panangaden: *The Measurement Calculus*, 2007.

Example

Consider the following pattern:

$$N_2 E_{12} M_1^{XY,0} X_2^{s_1}$$

Example

Consider the following pattern:

$$N_2 E_{12} M_1^{XY,0} X_2^{s_1}$$

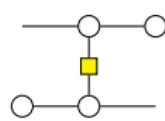
It has two branches (=possible computations), depicted as following ZX-diagrams:

Example

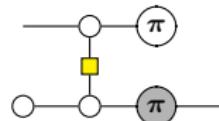
Consider the following pattern:

$$N_2 E_{12} M_1^{XY,0} X_2^{s_1}$$

It has two branches (=possible computations), depicted as following ZX-diagrams:



$$s_1 = 0$$



$$s_1 = 1$$

A logician's view

The ZX-calculus is:

³This requires adding some rules to the ones we've seen.

A logician's view

The ZX-calculus is:

- ▶ *Sound*: If two diagrams are equal, then the corresponding linear maps are equal,

³This requires adding some rules to the ones we've seen.

A logician's view

The ZX-calculus is:

- ▶ *Sound*: If two diagrams are equal, then the corresponding linear maps are equal,
- ▶ *Universal*: Every linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$ can be represented as a diagram,

³This requires adding some rules to the ones we've seen.

A logician's view

The ZX-calculus is:

- ▶ *Sound*: If two diagrams are equal, then the corresponding linear maps are equal,
- ▶ *Universal*: Every linear map $\mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^m}$ can be represented as a diagram,
- ▶ *Complete*: If two linear maps are equal, then the corresponding diagrams are equal³.

³This requires adding some rules to the ones we've seen.

Applications

- ▶ Classical simulation of quantum circuits
- ▶ Circuit optimisation

Applications

- ▶ Classical simulation of quantum circuits
 - ▶ Kissinger and van de Wetering: *Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions*, Quantum Sci. Technol, 2022
- ▶ Circuit optimisation

Applications

- ▶ Classical simulation of quantum circuits
 - ▶ Kissinger and van de Wetering: *Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions*, Quantum Sci. Technol, 2022
 - ▶ Cam, Martiel: *Speeding up quantum circuits simulation using ZX-Calculus*, arXiv:2305.02669, 2023
- ▶ Circuit optimisation

Applications

- ▶ Classical simulation of quantum circuits
 - ▶ Kissinger and van de Wetering: *Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions*, Quantum Sci. Technol, 2022
 - ▶ Cam, Martiel: *Speeding up quantum circuits simulation using ZX-Calculus*, arXiv:2305.02669, 2023
- ▶ Circuit optimisation
 - ▶ Kissinger and van de Wetering: *Reducing the number of non-Clifford gates in quantum circuits*, Phys. Rev. A, 2020

Applications

- ▶ Classical simulation of quantum circuits
 - ▶ Kissinger and van de Wetering: *Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions*, Quantum Sci. Technol, 2022
 - ▶ Cam, Martiel: *Speeding up quantum circuits simulation using ZX-Calculus*, arXiv:2305.02669, 2023
- ▶ Circuit optimisation
 - ▶ Kissinger and van de Wetering: *Reducing the number of non-Clifford gates in quantum circuits*, Phys. Rev. A, 2020
 - ▶ Staudacher, Schmid, Zeiher, Wille and Kranzlmüller: *Multi-controlled phase gate synthesis with ZX-calculus applied to neutral atom hardware*, EPTCS, 2024

Applications

- ▶ Error correction
- ▶ Photonic quantum computer design
- ▶ Barren plateau analysis in quantum machine learning
- ▶ Computational quantum chemistry

Applications

- ▶ Error correction
 - ▶ Khesin, Lu and Shor: *Universal graph representation of stabilizer codes*, arXiv:2411.14448, 2025
- ▶ Photonic quantum computer design
- ▶ Barren plateau analysis in quantum machine learning
- ▶ Computational quantum chemistry

Applications

- ▶ Error correction
 - ▶ Khesin, Lu and Shor: *Universal graph representation of stabilizer codes*, arXiv:2411.14448, 2025
- ▶ Photonic quantum computer design
 - ▶ Ostmann, Nunn and Jones: *Nonlinear photonic architecture for fault-tolerant quantum computing*, arXiv:2510.06890, 2025
- ▶ Barren plateau analysis in quantum machine learning
- ▶ Computational quantum chemistry

Applications

- ▶ Error correction
 - ▶ Khesin, Lu and Shor: *Universal graph representation of stabilizer codes*, arXiv:2411.14448, 2025
- ▶ Photonic quantum computer design
 - ▶ Ostmann, Nunn and Jones: *Nonlinear photonic architecture for fault-tolerant quantum computing*, arXiv:2510.06890, 2025
- ▶ Barren plateau analysis in quantum machine learning
 - ▶ Wang, Yeung and Koch: *Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning*, Quantum 2024
- ▶ Computational quantum chemistry

Applications

- ▶ Error correction
 - ▶ Khesin, Lu and Shor: *Universal graph representation of stabilizer codes*, arXiv:2411.14448, 2025
- ▶ Photonic quantum computer design
 - ▶ Ostmann, Nunn and Jones: *Nonlinear photonic architecture for fault-tolerant quantum computing*, arXiv:2510.06890, 2025
- ▶ Barren plateau analysis in quantum machine learning
 - ▶ Wang, Yeung and Koch: *Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning*, Quantum 2024
- ▶ Computational quantum chemistry
 - ▶ Cowtan, Dilkes, Duncan, Simmons and Sivarajah: *Phase Gadget Synthesis for Shallow Circuits*, EPTCS 2020

Further reading

- ▶ ZX-website: zxcalculus.com
- ▶ John van de Wetering: *ZX-calculus for the working quantum computer scientist*, arXiv:2012.13966
- ▶ Bob Coecke and Aleks Kissinger: *Picturing Quantum Processes*, CUP 2017

Further reading

- ▶ ZX-website: zxcalculus.com
- ▶ John van de Wetering: *ZX-calculus for the working quantum computer scientist*, arXiv:2012.13966
- ▶ Bob Coecke and Aleks Kissinger: *Picturing Quantum Processes*, CUP 2017

Thank you for your attention!