
A Categorical Model for Organic Chemistry

Ella Galea, Leo Lobskib,∗, Fabio Zanasib

aUniversity of Bristol, Queens Road BS8 1QU, Bristol, UK
bUniversity College London, Gower Street WC1E 6BT, London, UK

Abstract

We introduce a mathematical framework for organic chemistry, with three inter-
related perspectives on chemical processes: reaction schemes, formal reactions
and disconnection rules. We apply the framework to retrosynthetic analysis,
an important research method in synthetic chemistry. Our approach represents
molecules as labelled graphs, while the interactions between them are repre-
sented either as double pushout graph rewriting, partial bijections or local edge
rewrite rules. In particular, we show that the formal reactions are generated
by reaction schemes using double pushout rewriting, and that the disconnection
rules are sound, complete and universal with respect to chemical reactions. The
mathematical formulation of retrosynthesis is based on layered props – a recently
introduced categorical model for partial explanations in scientific reasoning.

Keywords: Chemical graph rewriting, Chemical reactions, Disconnection
rules, Retrosynthesis

1. Introduction

A chemical reaction can be understood as a rule which tells us what the
outcome molecules (or molecule-like objects, such as ions) are when several
molecules are put together. If, moreover, the reaction records the precise pro-
portions of the molecules as well as the conditions for the reaction to take
place (temperature, pressure, concentration, presence of a solvent etc.), it can
be seen as a precise scientific prediction, whose truth or falsity can be tested
in a lab, making the reaction reproducible. Producing complicated molecules,
as required e.g. by the pharmaceutical industry, requires, in general, a chain
of several consecutive reactions in precisely specified conditions. The general
task of synthetic chemistry is to come up with reproducible reaction chains to
generate previously unknown molecules (with some desired properties) [1]. Suc-
cessfully achieving a given synthetic task requires both understanding of the
chemical mechanisms and the empirical knowledge of existing reactions. Both
of these are increasingly supported by computational methods [2]: rule-based
and dynamical models are used to suggest potential reaction mechanisms, while
database search is used to look for existing reactions that would apply in the
context of interest [3]. The key desiderata for such tools are tunability and

∗Corresponding author
Email addresses: ella.gale@bristol.ac.uk (Ella Gale), leo.lobski.21@ucl.ac.uk

(Leo Lobski), f.zanasi@ucl.ac.uk (Fabio Zanasi)

Preprint submitted to Elsevier December 19, 2024

specificity. Tunability endows a synthetic chemist with tools to specify a set
of goals (e.g. adding or removing a functional group1), while by specificity we
mean maximising yield and minimising side products.

Retrosynthetic analysis. In this article, we focus on the area of synthetic chem-
istry known as retrosynthesis [4, 3, 5]. While reaction prediction asks what
reactions will occur and what outcomes will be obtained when some molecules
are allowed to interact, retrosynthesis goes backwards: it starts with a target
molecule that we wish to produce, and it proceeds in the “reverse” direction
by asking what potential reactants would produce the target molecule. While
many automated tools for retrosynthesis exist (see e.g. [6, 7, 8, 9, 10, 11, 12]),
there is no uniform mathematical grounding for compositional reasoning about
retrosynthesis. The primary contribution of this paper is to provide such a math-
ematically sound framework relevant for the retrosynthetic practice. Indeed, all
three kinds of transformations of chemical graphs we consider (reactions, reac-
tion schemes and disconnection rules) appear in the automated retrosynthetic
tools. By formalising the methodology at this level of mathematical general-
ity, we are able to provide insights into incorporating features that the current
automated retrosynthesis tools lack: these include modelling chirality, the reac-
tion environment, and the protection-deprotection steps (see for example [13]),
which are all highly relevant to practical applications. Our formalism, there-
fore, paves the way for new automated retrosynthesis tools, accounting for the
aforementioned features.

Mathematically, our approach to retrosynthesis is phrased in the algebraic
formalism of string diagrams [14], and most specifically uses layered props. Lay-
ered props were originally introduced, in [15], as models for systems that have
several interdependent levels of description. In the context of chemistry, the
description levels play a threefold role: first, each level represents a reaction en-
vironment, second, the morphisms in different levels are taking care of different
synthetic tasks, and third, the rules that are available in a given level reflect the
structure that is deemed relevant for the next retrosynthetic step. The latter
can be seen as a kind of coarse-graining, where by deliberately restricting to a
subset of all available information, we reveal some essential features about the
system. Additionally, organising chemical processes into levels allows us to in-
clude conditions that certain parts of a molecule are to be kept intact. While the
presentation here is self-contained and, in particular, does not assume a back-
ground on layered props, we emphasise that our approach is principled in the
sense that many choices we make are suggested by this more general framework.
We point such choices out when we feel the intuition that comes from layered
props is helpful for understanding the formalism presented in the present work.

Threefold view of chemical graphs. Throughout the article, we take three per-
spectives on chemical processes (Figure 1), and discuss the ways in which they
are interlinked. The first perspective is that of reaction schemes (Section 5),
which encode how bonds and charges change when two parts of chemical com-
pounds interact. Reaction schemes give rise to reactions via double pushout
graph rewriting (Section 4). The category of formal reactions (Definition 5.7) is

1Part of a molecule that is known to be responsible for certain chemical function.

2

our second perspective: reactions can be thought of as combinatorial rearrange-
ments of molecules that preserve matter and charge. The third perspective
are the local graph rewrites used in retrosynthesis – known as disconnection
rules – which capture any possible local change in charge or connectivity. The
disconnection rules can be seen as a subset of reaction schemes, and as an ax-
iomatisation of reactions: while they provide a fine-grained view of the chemical
transformations, they allow us to recursively define a functor to reactions.

Reactions

Reaction schemes Disconnection rules
Embedding

Graph rewriting

Functorial translation

Universality

Figure 1: The three perspectives on chemical processes

Whereas chemical reactions have been studied formally before, a mathemat-
ical description of disconnection rules has received far less attention [16, 17, 18].
Our approach takes a novel perspective on the basic units of retrosynthetic anal-
ysis – the disconnection rules – by making them first-class citizens of reaction
representation. The mathematical and conceptual justification for doing so lies
in the fact that, as we show, both disconnection rules and reactions can be ar-
ranged into (monoidal) categories [17], such that there is a functor taking each
sequence of disconnection rules to a reaction. Our main result concerning the
disconnection rules states that, under a certain axiomatisation, the functor is
faithful and full up to isomorphism. Such a categorical perspective provides a
precise mathematical meaning to the claim that disconnection rules are sound,
complete and universal with respect to the reactions. This implies that every re-
action can be decomposed into a sequence of disconnection rules (universality)
in an essentially unique way (completeness). More broadly, our contribution
incorporates disconnection rules within the framework of applied category the-
ory [19], which emphasises compositional modelling as a means to uniformly
study systems across various disciplines of science.

Contributions. We list the novel contributions per section.

• in Section 4, we introduce morphisms of graphs representing molecules as
functions that do not remove existing charge or matter, and show that the
resulting category is (M,N)-adhesive (Theorem 4.24),

• in Section 5, we define the category of reactions (Definition 5.7), and show
that its morphisms arise as double pushout diagrams of reaction schemes
(Theorem 5.5, Proposition 5.6),

• in Section 6, we introduce the mathematical description of retrosynthetic
disconnection rules (Definition 6.1) together with equations (Definition 6.5)
between them,

3

• Section 7 constructs a translation from the disconnection rules to reac-
tions, and proves that it is complete (Theorem 7.3) and universal (Theo-
rem 7.4),

• Section 9 introduces the mathematical description of retrosynthesis.

Synopsis. In Section 2, we give a brief overview of the methodology of retrosyn-
thetic analysis, as well as of the existing tools for automating it. The entirety
of Section 3 is devoted to constructing the labelled graphs that we use to rep-
resent molecular entities: these form the objects of all three categories that
are discussed in the three following sections. Section 4 focusses on the cate-
gorical constructions needed for representing reactions as double pushout graph
rewriting, which are used in Section 5 to define reactions and reaction schemes.
Section 6 formalises retrosynthetic disconnection rules, from which we define a
functor to reactions in Section 7, where it is moreover proved to be faithful and
full up to isomorphism. Section 8 recalls the conceptual and mathematical ideas
behind layered props. All the perspectives on chemical reactions come together
in the layered prop defined in Section 9, where we also describe how to reason
about retrosynthesis within it. In Section 10 we sketch the prospects of future
work.

This article extends the conference paper A Categorical Approach to Syn-
thetic Chemistry [17] with new material in Sections 4-7 and 9. Specifically, the
proof of adhesivity (Section 4) and the results on universality and completeness
(Section 7) are new. We have also included more detailed constructions, all
the missing proofs, and several additional examples to illustrate the definitions.
The material in Sections 6, 7 and Appendix A is based on a conference paper
Disconnection Rules are Complete for Chemical Reactions [18], to appear in the
proceedings of ICTAC 2024.

2. Retrosynthetic Analysis

Retrosynthetic analysis starts with a target molecule we wish to produce but
do not know how. The aim is to “reduce” the target molecule to known (com-
mercially available) outcome molecules in such a way that when the outcome
molecules react, the target molecule is obtained as a product. This is done by
(formally) partitioning the target molecule into functional parts referred to as
synthons, and finding actually existing molecules that are chemically equivalent
to the synthons; these are referred to as synthetic equivalents [20, 1, 21]. If no
synthetic equivalents can be found that actually exist, the partitioning step can
be repeated, this time using the synthetic equivalents themselves as the target
molecules, and the process can continue until either known molecules are found,
or a maximum number of steps is reached and the search is stopped. Note that
the synthons themselves do not refer to any molecule as such, but are rather
a convenient formal notation for parts of a molecule. For this reason, passing
from synthons to synthetic equivalents is a non-trivial step involving intelligent
guesswork and chemical know-how of how the synthons would react if they were
independent chemical entities.

Clayden, Warren and Greeves [21] give the example in Figure 2 when in-
troducing retrosynthesis (a synthesis of benzyl benzoate). Here the molecule
on the left-hand side (benzyl benzoate) is the target, while the resulting two

4

PhOPh

O
Ph

OPh

O

α

α Ph

OPh

O

H

Cl

PhOPh

O

ClH

disconnection∼ reaction

Figure 2: A retrosynthetic sequence for benzyl benzoate

parts with the symbol α are the synthons. We use the symbol α to indicate
where the cut has been made, and hence which atoms have unpaired electrons.
Replacing the symbols α in the synthons with Cl and H, we obtain the candi-
date synthetic equivalents (benzoyl chloride and benzyl alcohol) shown one step
further to the right. As the next step, we find a reaction using the synthetic
equivalents as reactants and having the target amongst the products (this can
be done by e.g. looking up a reaction database). This is the simplest possible
instance of a retrosynthetic sequence, in the sense that a reaction pathway is
found in one iteration. In general, the interesting sequences are much longer,
and, importantly, contain information under what conditions the reactions will
take place.

2.1. Existing tools

Many tools for automatic retrosynthesis have been successfully developed
starting from the 1960s [6, 7, 9, 10, 11]. They can be divided into two classes [3]:
template-based [22, 23] and template-free [9, 24]. Template-based tools contain a
rule database (the template), which is either manually encoded or automatically
extracted. Given a molecule represented as a graph, the model checks whether
any rules are applicable to it by going through the database and comparing the
conditions of applying the rule to the subgraphs of the molecule [3]. Choosing
the order in which the rules from the template and the subgraphs are tried are
part of the model design. Template-free tools, on the other hand, are data-driven
and treat the retrosynthetic rule application as a translation between graphs or
their representations as strings: the suggested transforms are based on learning
from known transforms, avoiding the need for a database of rules [3, 11].

While successful retrosynthesic sequences have been predicted by the com-
putational retrosynthesis tools, they lack a rigorous mathematical foundation,
which makes them difficult to compare, combine or modify. Other common
drawbacks of the existing approaches include not including the reaction condi-
tions or all cases of chirality as part of the reaction template [3, 9], as well as
the fact that the existing models are unlikely to suggest protection-deprotection
steps. Additionally, the template-free tools based on machine learning tech-
niques sometimes produce output that does not correspond to molecules in any
obvious way, and tend to reproduce the biases present in the literature or a data
set [3].

For successful prediction, the reaction conditions are, of course, crucial.
These include such factors as temperature and pressure, the presence of a solvent
(a compound which takes part in the reaction and whose supply is essentially
unbounded), the presence of a reagent (a compound without which the reac-
tion would not occur, but which is not the main focus or the target), as well
as the presence of a catalyst (a compound which increases the rate at which

5

the reaction occurs, but is itself unaltered by the reaction). The above factors
can change the outcome of a reaction dramatically [25, 26]. There have indeed
been several attempts to include reaction conditions into the forward reaction
prediction models [27, 28, 29, 30]. However, the search space in retrosynthesis
is already so large that adding another search criterion should be done with
caution. A major challenge for predicting reaction conditions is that they tend
to be reported incompletely or inconsistently in the reaction databases [31].

Chirality (mirror-image asymmetry) of a molecule can alter its chemical
and physiological properties, and hence constitutes a major part of chemical
information pertaining to a molecule. While template-based methods have been
able to successfully suggest reactions involving chirality (e.g. [7]), the template-
free models have difficulties handling it [9]. This further emphasises usefulness
of a framework which is able to handle both template-based and template-free
models.

The protection-deprotection steps are needed when more than one functional
group of a molecule A would react with a molecule B. To ensure the desired
reaction, the undesired functional group of A is first “protected” by adding
a molecule X, which guarantees that the reaction product will react with B
in the required way. Finally, the protected group is “deprotected”, producing
the desired outcome of B reacting with the correct functional group of A. So,
instead of having a direct reaction A + B → C (which would not happen, or
would happen imperfectly, due to a “competing” functional group), the reaction
chain is:

(1) A + X → A′ (protection),

(2) A′ + B → C ′,

(3) C ′ + Y → C (deprotection).

The trouble with the protection-deprotection steps is that they temporarily
make the molecule larger, which means that an algorithm whose aim is to make
a molecule smaller will not suggest them.

3. Chemical Graphs

We define a chemical graph as a labelled graph whose edge labels indicate
the bond type (either covalent or ionic), and whose vertex labels are either
atoms or unpaired electrons together with a charge (Definitions 3.2, 3.5 and 3.6).
Chemical graphs are the objects of the reaction category (Definition 5.7) and
the disconnection category (Definition 6.5), as well as the targets on which
the reaction schemes operate (Definition 5.3 and Theorem 5.5). In order to
account for chirality, we add spatial information to chemical graphs, making it
an oriented (pre-)chemical graph (Definition 3.13) in Subsection 3.1.

Let us fix the following notions needed for Definitions 3.2, 3.5 and 3.6:

• a countable set of vertex names VN,

• a set of vertex labels At such that

(1) At is finite,

(2) At contains the special symbol α,

6

(3) At \ {α} has at least two elements,

• a valence function v : At→ N such that v(α) = 1,

• the set of edge labels Lab := {0, 1, 2, 3, 4, i},

• the functions cov, ion : Lab→ N defined by

– if x ∈ {0, 1, 2, 3, 4}, then cov(x) := x and ion(x) := 0,

– cov(i) := 0 and ion(i) := 1.

We usually denote the vertex names by lowercase Latin letters or by positive
integers. While we only make three formal assumptions about the set of vertex
labels, in all the examples we shall assume that At contains a symbol for each
main-group element of the periodic table: {H,C,O, P, . . . } ⊆ At. For this
reason, we will also refer to At as the atom labels. The special symbol α may
be thought of as representing an unpaired electron or a free charge. Similarly,
we shall assume in the examples that the valence of an element symbol is the
number of electrons in its outer electron shell. The integers {0, 1, 2, 3, 4} in the
set of edge labels stand for covalent bonds, while i stands for an ionic bond.

Remark 3.1. The reason for choosing such level of generality for the atom
labels and their valencies is the ability to model elements which exhibit different
valence depending on the context. For instance, one could have separate atom
labels for nitrogen whose valence is 5 (all outer shell electrons are shared or take
part in a reaction) or 3 (two of the outer shell electrons pair with each other).

Definition 3.2 (Chemically labelled graph). A chemically labelled graph is a
triple (V, τ,m), where V ⊆ VN is a finite set of vertices, τ : V → At × Z is
a vertex labelling function, and m : V × V → Lab is an edge labelling function
satisfying m(v, v) = 0 and m(v, w) = m(w, v) for all v, w ∈ V .

Thus, a chemically labelled graph is irreflexive (we interpet the edge label 0
as no edge) and symmetric, and each of its vertices is labelled with an element of
At, together with an integer indicating the charge. Given a chemically labelled
graph A, we write (VA, τA,mA) for its vertex set and the labelling functions.
We abbreviate the vertex labelling function followed by the first projection as
τAt
A , and similarly we write τ CrgA for composition with the second projection.

Given a chemically labelled graph A and vertex names u, v ∈ VN such that
u ∈ VA but v /∈ VA \ {u}, we denote by A(u 7→ v) the chemically labelled
graph whose vertex set is (VA \ {u})∪{v}, and whose vertex and edge labelling
functions agree with those of A, treating v as if it were u. Further, we define
the following special subsets of vertices:

• α-vertices, whose label is the special symbol: α(A) := τ−1
A (α,Z),

• chemical vertices, whose label is not α: Chem(A) := VA \ α(A),

• neutral vertices, whose charge is zero: Neu(A) := τ−1
A (At, 0),

• charged vertices, which have a non-zero charge: Crg(A) := VA \ Neu(A),

• negative vertices, which have a negative charge:

Crg− (A) := {v ∈ VA : τ CrgA (v) < 0},

7

• positive vertices, which have a positive charge:

Crg+ (A) := {v ∈ VA : τ CrgA (v) > 0}.

The net charge of a subset U ⊆ VA is the integer Net (U) :=
∑

v∈U τ CrgA (v).

Example 3.3. We give three examples of chemically labelled graphs: A, B
(carbonate anion) and C (sodium cloride). We adopt the following conventions:
(1) the vertex label from At is drawn at the centre of a vertex, (2) the vertex
name is drawn as a superscript on the left (so within a single graph, no left
superscript appears twice), (3) a non-zero charge is drawn as a superscript on
the right, (4) n-ary covalent bonds are drawn as n parallel lines, and (5) ionic
bonds are drawn as dashed lines.

A B

uC vO

zO−

wO−aα

rO

bα

uC
uNa+ vCl−

C

.

Below we give a table with different kinds of vertex subsets for the graphs:

A B C
α-vertices {a, b} ∅ ∅

chemical vertices {r, u} VB VC

neutral vertices VA {u, v} ∅
charged vertices ∅ {w, z} VC

negative vertices ∅ {w, z} {v}
positive vertices ∅ ∅ {u}

net charge 0 −2 0

Definition 3.4 (Neighbours). Given a chemically labelled graph A and a vertex
u ∈ VA, we define the sets of neighbours NA(u), covalent neighbours CNA(u) and
ionic neighbours INA(u) of u as follows:

NA(u) := {v ∈ VA : mA(u, v) ̸= 0},
CNA(u) := {v ∈ VA : cov(mA(u, v)) ̸= 0},
INA(u) := {v ∈ VA : ion(mA(u, v)) ̸= 0}.

Definition 3.5 (Pre-chemical graph). A pre-chemical graph A = (VA, τA,mA)
is a chemically labelled graph satisfying the following additional conditions:

1. for all v ∈ α(A) and w ∈ VA we have

(a) τ CrgA (v) ∈ {−1, 0, 1},
(b) mA(v, w) ∈ {0, 1, i},
(c) NA(v) has at most one element, and if w ∈ NA(v), then w ∈ Chem(A),

2. for all v ∈ Chem(A) we have

(a) either INA(v) = {u} for some u ∈ Chem(A), or INA(v) ⊆ α(A) ∩
Crg+ (A), or INA(v) ⊆ α(A) ∩ Crg− (A),

8

(b) if INA(v) ̸= ∅, then v ∈ Crg(A) and τ CrgA (v) = −Net (INA(v)).

Conditions 1a-1c say that a vertex labelled by α is either neutral or has
charge±1, has at most one neighbour, which is necessarily chemical and to which
it is connected either via an ionic or a single covalent bond. Conditions 2a-2b
say that an edge with label i only connects vertices which have opposite charges
such that at least one is chemical and the net charges are equal in magnitude.

We say that a pre-chemical graph A is valence-complete if for all v ∈ VA, we
have ∣∣∣τ CrgA (v)

∣∣∣ +
∑
u∈VA

cov (mA(u, v)) = vτAt
A (v).

Definition 3.6. A chemical graph is a valence-complete pre-chemical graph A
such that α(A) ∩ Crg+ (A) = ∅.

A synthon is a chemical graph which is moreover connected. The collection
of chemical graphs is, therefore, generated by the disjoint unions of synthons.
A molecular graph is a chemical graph with no α-vertices. A molecular entity is
a connected molecular graph.

Example 3.7. The chemically labelled graphs in Example 3.3 are, in fact,
chemical graphs with the standard valences of the atoms (i.e. v(C) = 4, v(O) =
2 and v(H) = v(Cl) = v(Na) = 1). Since the three graphs are connected, they
are all synthons. Moreover, B and C are molecular entities.

Example 3.8. We give an example of a pre-chemical graph which fails to be
a chemical graph (the valence of the vertices 1, 2, 4 and 6 is not correct). This
graph appears as part of the reaction scheme for glucose phosphorylation in
Example 5.2.

3α

2O

1H

4P

5O

6α

7O−

8O− .

3.1. Chirality

An important part of chemical data is stereochemistry, that is, spatial orien-
tation of the molecule: many molecules of interest (like pharmaceuticals) possess
chiral enantiomers (i.e. molecules that have the same atoms and connectivity,
but are mirror images of each other due to spatial orientation) which have dif-
ferent properties. We therefore wish to incorporate (rudimentary) spatial infor-
mation into (pre-)chemical graphs. The idea is to record for each triple of atoms
whether they are on the same line or not, and similarly, for each quadruple of
atoms whether they are in the same plane or not.

While the results of the following sections do not account for orientation and
only manipulate the connectivity of a graph, we feel that spatial orientation is
such an important aspect of a chemical compound that it has to be accounted for
as the immediate next step in this line of work (see Subsection 10.1). We there-
fore include this subsection, outlining how to incorporate spatial orientation at
the level of objects.

9

B

A

C

D

•

Figure 3: Observer looking at the edge AC from B sees D on their right.

Definition 3.9 (Triangle relation). Let S be a set. We call a ternary relation
P ⊆ S×S×S a triangle relation if the following hold for all elements A, B and
C of S: (1) ABB /∈ P, and (2) if P(ABC) and p(ABC) is any permutation of
the three elements, then P(p(ABC)).

Definition 3.10 (Tetrahedron relation). Let S be a set, and let P be a fixed
triangle relation on S. We call a quaternary relation T ⊆ S × S × S × S a
tetrahedron relation if the following hold for all elements A, B, C and D of S:
(1) if T (ABCD), then P(ABC), and (2) if T (ABCD) and p(ABCD) is any
even permutation of the four elements, then T (p(ABCD)).

Unpacking the above definitions, a triangle relation is closed under the action
of the symmetric group S3 such that any three elements it relates are pairwise
distinct, and a tetrahedron relation is closed under the action of the alternating
group A4 such that if it relates some four elements, then the first three are
related by some (fixed) triangle relation (this, inter alia, implies that any related
elements are pairwise distinct, and any 3-element subset is related by the fixed
triangle relation).

The intuition is that the triangle and tetrahedron relations capture the spa-
tial relations of (not) being on the same line or plane: P(ABC) stands for A,
B and C not being on the same line, that is, determining a triangle; similarly,
T (ABCD) stands for A, B, C and D not being in the same plane, that is,
determining a tetrahedron. The tetrahedron is moreover oriented: T (ABCD)
does not, in general, imply T (DABC). We visualise T (ABCD) in Figure 3 by
placing an “observer” at B who is looking at the edge AC such that A is above
C for them. Then D is on the right for this observer. Placing an observer in the
same way in a situation where T (DABC) (which is equivalent to T (CBAD)),
they now see D on their left.

Remark 3.11. We chose not to include the orientation of the triangle, which
amounts to the choice of S3 over A3 in the definition of a triangle relation
(Definition 3.9). This is because we assume that our molecules float freely in
space (e.g. in a solution), so that there is no two-dimensional orientation.

The following example demonstrates that the triangle and tetrahedron rela-
tions indeed capture triangles and tetrahedrons in the Euclidean setting.

Example 3.12. Let us define the triangle relation P on the 3-dimensional
Euclidean space R3 by letting P(abc) if and only if (b− a)× (c− a) ̸= 0, where
× denotes the vector product. We then have P(abc) precisely when c does not

10

lie on the line determined by a and b, that is, when the three points uniquely
determine a plane in R3.

With respect to the above triangle relation, let us define the tetrahedron
relation T by letting T (abcd) if and only if (b− a)(c− a)(d− a) > 0, where the
bar denotes the scalar triple product. We then have T (abcd) precisely when
the points a, b, c and d are vertices of a non-degenerate (a non-zero volume)
tetrahedron in such a way that d lies on that side of the plane determined by a,
b and c to which the vector (b− a)× (c− a) points (see Figure 3).

Definition 3.13 (Oriented chemically labelled graph). An oriented chemically
labelled graph is a tuple (A,P, T) where A is a chemically labelled graph, P is
a triangle relation on VA and T is a tetrahedron relation on VA with respect to
P.

An oriented (pre-)chemical graph is a chemically labelled graph, which is
also a (pre-)chemical graph (Definitions 3.5 and 3.6).

Definition 3.14 (Preservation and reflection of orientation). Let (M,PM , TM)
and (N,PN , TN) be oriented chemically labelled graphs, and let f : M → N
be a labelled graph isomorphism. We say that f preserves orientation (or is
orientation-preserving) if for all vertices A, B, C and D of M we have:

(1) PM (ABC) if and only if PN (fA, fB, fC), and

(2) TM (ABCD) if and only if TN (fA, fB, fC, fD).

Similarly, we say that f reflects orientation (or is orientation-reflecting) if
for all vertices A, B, C and D of M we have:

(1) PM (ABC) if and only if PN (fA, fB, fC), and

(2) TM (ABCD) if and only if TN (fD, fA, fB, fC).

Note that an orientation-reflecting isomorphism differs from an orientation-
preserving one only in that preservation requires the tetrahedron relations to be
the same (up to an even permutation), while reflection requires them to be the
same up to an odd permutation.

Definition 3.15 (Chirality). We say that two oriented chemically labelled
graphs are chiral if there exists an orientation-reflecting isomorphism, but no
orientation-preserving isomorphism between them.

Example 3.16. Consider 2-butanol, whose molecular structure we draw in
two different ways at the top of Figure 4. Here we adopt the usual chemical
convention for drawing spatial structure: a dashed wedge indicates that the bond
points “into the page”, and a solid wedge indicates that the bond points “out
of the page”. The spatial structure is formalised by defining the tetrahedron
relation for the graph on the left-hand side as the closure under the action of A4

of T (1234), and for the one on the right-hand side as (the closure of) T (4123).
In both cases, the triangle relation is dictated by the tetrahedron relation, so
that any three-element subset of {1, 2, 3, 4} is in the triangle relation. Now the
identity map (on labelled graphs) reflects orientation. It is furthermore not hard
to see that every isomorphism restricts to the identity on the vertices labelled

11

Figure 4: Top: two configurations of 2-butanol. Bottom: two configurations of isopentane.

with superscripts, so that there is no orientation-preserving isomorphism. Thus
the two molecules are chiral according to Definition 3.15.

By slightly modifying the structures, we obtain two configurations of isopen-
tane, drawn at the bottom of Figure 4. However, in this case we can find an
orientation-preserving isomorphism (namely the one that swaps vertices 2 and
4), so that the molecules are not chiral.

Example 3.17. Example 3.16 with 2-butanol demonstrated how to capture
central chirality using Definition 3.15. Now consider 1,3-dichloroallene as an
example of axial chirality. We draw two versions, as before:

The tetrahedron relation is generated by T (1234) and T (6123) for both molecules
(note, however, that the vertices 4 and 6 have different labels). Now the iso-
morphism which swaps vertices 4 and 6 and is identity on all other vertices is
orientation-reflecting, but not orientation-preserving. The only other isomor-
phism is {1 7→ 4, 2 7→ 5, 3 7→ 6, 4 7→ 3, 5 7→ 2, 6 7→ 1}, which does not preserve
orientation. Thus the two molecules are indeed chiral.

4. Pre-Chemical Graphs Form an Adhesive Category

In this section we equip pre-chemical graphs with a notion of morphisms,
making them into a category. We identify two classes of morphisms, vertex

12

embeddings (Definition 4.4) and matchings (Definition 4.7), which are used for
double pushout rewriting in the next section. As a mathematical prerequisite
for double pushout graph rewriting, we prove in Subsection 4.1 that vertex
embeddings and matchings give the category of pre-chemical graphs an adhesive
structure (Theorem 4.24).

A morphism of pre-chemical graphs is a function which, intuitively, preserves
any resources and structure (matter, charge and bonds) present in the domain.
While the main notion of a chemically meaningful transformation is that of a
reaction (Definition 5.7), it is not a natural notion of a graph morphism, as it
only captures a subclass of bijective maps. The morphisms are needed to capture
reaction schemes (Definition 5.1) as well as their instances (Definition 5.3),
which we show to be in one-to-one correspondence with reactions (with some
mild assumptions on the subsets changed by the reaction) in Proposition 5.6.

Definition 4.1 (Morphism of pre-chemical graphs). A morphism of pre-chemical
graphs f : A → B is a function f : VA → VB such that its restriction to the
chemical vertices f |Chem(A) is injective, the images f(Chem(A)) and f(α(A)) are
disjoint, and for all v, u ∈ VA and w, z ∈ VB we have

1. if v ∈ Chem(A), then τAt
B (fv) = τAt

A (v),

2. if v ∈ Crg+ (A), then f(v) ∈ Crg+ (B); and if v ∈ Crg− (A), then f(v) ∈
Crg− (B),

3. if Net
(
f−1(w)

)
̸= 0, then Net

(
f−1(w)

)
= τ CrgB (w),

4. if mA(v, u) = i, then mB(fv, fu) = i,

5. if v, u ∈ Chem(A) and mA(v, u) ̸= 0, then mB(fv, fu) = mA(v, u),

6. if w ∈ f(α(A)) and z = f(b) for some b ∈ Chem(A) such that

k :=
∑

a∈f−1(w)

cov(mA(a, b)) ̸= 0,

then k = cov(mB(w, z)).

Example 4.2. The idea of a morphism is that it preserves all the atoms,
bonds and charges present in the domain, potentially more being present in
the codomain. We give an example below, where we use superscripts to indi-
cate the underlying function: each vertex in the domain is mapped to the vertex
in the codomain with the same superscript:

1C

2H

3α

4α

4α 1C

2H

3C

4O

H O

.

Let us denote by PChem the category of pre-chemical graphs and their
morphisms. Note that PChem has a symmetric monoidal structure given by
the disjoint union of chemical graphs.

13

Proposition 4.3. If f : A→ B is a morphism of pre-chemical graphs, then for
all a, v ∈ VA, we have

(1) cov (mA(a, v)) ≤ cov (mB(fa, fv)),

(2)
∑

u∈VA
cov (mA(a, u)) ≤

∑
u∈VB

cov (mB(fa, u)),

(3) f (CNA(a)) ⊆ CNB(fa).

Proof. If cov (mA(a, v)) = 0, then (1) is immediate. Hence let v ∈ CNA(a). By
condition 1c of being a pre-chemical graph (Definition 3.5), at least one of a
and v is chemical. If both are chemical, then condition 5 of Definition 4.1 yields
mB(fa, fv) = mA(a, v), so that (1) holds. Hence suppose that exactly one is an
α-vertex: without loss of generality, suppose that a ∈ α(A) and v ∈ Chem(A).
Condition 6 Definition 4.1 then yields

mB(fa, fv) =
∑

u∈f−1f(a)

mA(u, v) ≥ mA(a, v),

as is required for (1). Items (2) and (3) are easy consequences of ((1)).

Definition 4.4 (Vertex embedding). We say that a morphism f : A → B in
PChem is a vertex embedding if it is injective, bijective on chemical vertices,
and for all u ∈ VA we have τAt

B (fu) = τAt
A (u).

Example 4.5. A vertex embedding is an injective morphism that preserves all
the atom labels (including α) such that all the chemical vertices of the codomain
are in its image. In other words, it can only add new charges, edges or α-vertices
to the domain graph. We give an example below:

1C

2H

3α

4α

2H

1C3α

4α−

α .

We denote the class of vertex embeddings by E , and will often refer to the
elements of E simply as embeddings.

Definition 4.6 (Ion-closed subset). Let A be a pre-chemical graph. A subset
U ⊆ VA is ion-closed if for all vertices u, v ∈ VA, if u ∈ U and mA(u, v) = i,
then also v ∈ U .

Definition 4.7 (Matching). A matching is a morphism f : A→ C in PChem
such that the conditions (3), (5) and (6) of being a morphism (Definition 4.1)
hold without the exception for the zero charge or bond case, and the image
f(VA) is ion-closed.

Example 4.8. A matching is a morphism with the further restrictions that
all charges are preserved (including the zero charge), no new bonds can be
added between existing vertices. We thus think of a matching as identifying the
domain as a substructure of the codomain. We slightly modify the morphism
in Example 4.2 to obtain a matching:

14

1C

2H

3α

4α

4α 1C

2H

3C

4O

H O

.

Let us denote the class of matchings by M. We wish to characterise the
images of matchings between valence-complete pre-chemical graphs, which we
achieve in Proposition 4.16. To this end, we need to define the valence comple-
tion (Definition 4.10) and charge decomposition (Definition 4.12) of a subset of a
valence-complete pre-chemcial graph. We begin with the following observation.

Lemma 4.9. If m : A → C is a matching whose domain and codomain are
valence-complete, then for every u ∈ Chem(A) we have m (CNA(u)) = CNC(mu).

Proof. The inclusion m (CN(u)) ⊆ CN(mu) is part (3) of Proposition 4.3. Since
τA(u) = τC(mu), we have∑

w∈CN(u)

mA(u,w) =
∑

w∈CN(mu)

mC(mu,w).

If w ∈ CN(u) is chemical, then mC(mu,mw) = mA(u,w), while if it is an α-
vertex, then mC(mu,mw) =

∑
z∈m−1m(w) mA(u, z). It follows that∑

w∈CN(u)

mA(u,w) =
∑

w∈CN(u)∩Chem(A)

mA(u,w) +
∑

w∈CN(u)∩α(A)

mA(u,w)

=
∑

w∈CN(u)∩Chem(A)

mC(mu,mw)

+
∑

w∈m(CN(u)∩α(A))

∑
z∈m−1(w)

mA(u, z)

=
∑

w∈m(CN(u)∩Chem(A))

mC(mu,w) +
∑

w∈m(CN(u)∩α(A))

mC(mu,w)

=
∑

w∈m(CN(u))

mC(mu,w).

Combining this with the first equality, we get that∑
w∈CN(mu)

mC(mu,w) =
∑

w∈m(CN(u))

mC(mu,w).

Since m (CN(u)) ⊆ CN(mu), it follows that the sets are, in fact, equal.

Definition 4.10 (Valence completion). Let A be a valence-complete pre-chemical
graph and let U ⊆ Chem(A). We define the sets of formal symbols called the
indexed covalent neighbours, and the indexed ionic neighbours as follows:

CN (U) :=
{
vuj : u ∈ U, v ∈ CNA(u) ∩ (VA \ U) and j = 1, . . . ,mA(u, v)

}
,

IN (U) :=
{
vu,ij : u ∈ U, v ∈ INA(u) ∩ (VA \ U) and j = 1, . . . ,

∣∣∣τ CrgA (v)
∣∣∣} .

15

The valence completion of U is the pre-chemical graph2

Uα := (U ∪ CN (U) ∪ IN (U), τα,mα)

defined by the following labelling functions: for u,w ∈ U and z ∈ CN (U) ∪
IN (U), let τα(u) := τA(u), mα(u,w) := mA(u,w) and τAt

α (z) := α, and for the
sets defined above we let

τ Crgα (vuj) := 0,

τ Crgα (vu,ij) :=

{
1 if τ CrgA (v) > 0,

−1 if τ CrgA (v) < 0,

mα(u, vuj) := 1,

mα(u, vu,ij) := i.

Example 4.11. Consider the chemical graph below left. The valence comple-
tion of the dashed subset is given on the right. Note that there is a matching
from the valence completion into the original graph given by the identity on the
vertices.

αP

O

O−

6O4P

5O

7O−

8O− 6α4P

5O

7O−

8O− .

Definition 4.12 (Charge decomposition). Let A be a valence complete pre-
chemical graph and let B ⊆ Crg(A) be a subset of charged vertices. We define
the following sets of formal symbols: indexed positive vertices, and indexed neg-
ative vertices as follows:

PV(B) :=
{
b+j : b ∈ B ∩ Crg+ (A) and j = 1, . . . ,

∣∣∣τ CrgA (b)
∣∣∣} ,

NV(B) :=
{
b−j : b ∈ B ∩ Crg− (A) and j = 1, . . . ,

∣∣∣τ CrgA (b)
∣∣∣} .

The charge decomposition of U is the pre-chemical graph

BCrg :=
(
PV(B) ∪NV(B), τCrg,mCrg

)
defined by τCrg

(
b+j

)
:= (α, 1), τCrg

(
b−j

)
:= (α,−1), and mCrg is the constantly

zero function.

Example 4.13. Consider the chemical graph below left. The charge decompo-
sition of the oxygen vertex with vertex name 6 is given by the single negatively
charged α-vertex drawn on the right. As for the charge decomposition, note
that the identity mapping is a matching.

2We assume a unique choice of a vertex name for every element in CN (U)∪IN (U), disjoint
from the vertex names of VA. For legibility, we omit this technical detail.

16

αP

O

O−

6O− 6α− .

We now define the notion of a matchable subset, which lists the conditions
under which a subset of a valence-complete chemical graph comes from a match-
ing.

Definition 4.14 (Matchable subset). Let A be a valence-complete pre-chemical
graph. We say that a subset U ⊆ VA is matchable if it is ion-closed, and for
every u ∈ U , either u ∈ Chem(U) and N(u) ⊆ U , or u ∈ Crg(A), or there is a
v ∈ Chem(U) ∩ N(u) with N(v) ⊆ U .

Thus a subset is matchable if all boundary vertices and α-vertices are either
charged or connected to at least one interior chemical vertex. We first observe
that being matchable is a necessary condition for a subset to be an image of a
matching.

Lemma 4.15. First, m(A) is ion-closed by definition. Let m : A → B be a
matching such that A and B are valence-complete. Then m(A) is a matchable
subset of B.

Proof. If u ∈ Chem(A), then NB(mu) = m(NA(u)) ⊆ m(A). If u ∈ α(A)∩Crg(A),
then m(u) ∈ Crg(B). If u ∈ α(A) ∩ Neu(A), then there is a v ∈ Chem(A) with
mA(u, v) = 1, so that m(v) ∈ Chem(m(A)) ∩ NB(mu).

Proposition 4.16. Let A be a valence-complete pre-chemical graph. A subset
S ⊆ VA is matchable if and only if there is a matching m : C → A with a
valence-complete domain such that m(C) = S.

Proof. The ‘if’ direction is Lemma 4.15. Hence suppose S is matchable. We
define the following sets:

U := {s ∈ Chem(S) : N(s) ⊆ S},
B := Crg(S \ (U ∪ IN(U))).

It follows that U∪N(U)∪B = S, so that the image of the matching Uα+BCrg →
A is precisely S.

4.1. Adhesivity

Adhesive categories were introduced by Lack and Sobociński [32, 33] as a
categorical setting where pushouts along monomorphisms are well-behaved. The
main motivation is to provide an abstract mathematical framework for double
pushout graph rewriting. Adhesive categories have been generalised to M-
adhesive categories by Ehrig, Golas and Hermann [34], allowing for good be-
haviour of pushouts along a specified subclass of monomorphisms. A further
generalisation restricts the class of morphisms that have pushouts (still along a
restricted class of monomorphisms), resulting in (M,N)-adhesive categories of
Habel and Plump [35]. Here we prove that the category of pre-chemical graphs
PChem is (E ,M)-adhesive (Theorem 4.24), where E are the vertex embed-
dings, and M are the matchings. This result enables double pushout rewriting

17

in PChem, which we will use in the next section to define reaction schemes
and their instances.

We begin by stating the definition of an (M,N)-adhesive category. For the
sake of brevity, we do so without a detailed discussion of the terms appearing
in the definition. We refer the reader to Habel and Plump [35], Castelnovo,
Gadducci and Miculan [36], and Castelnovo and Miculan [37] for the details.

Definition 4.17 ((M,N)-adhesive category. Definition 1 in [35]). Let C be a
category, M a class of monomorphisms and N a class of morphisms in C. We
say that C is (M,N)-adhesive if the following properties hold:

1. M and N contain all isomorphisms and are closed under composition
and decomposition. Moreover, N is closed under M-decomposition: if
g ◦ f ∈ N and g ∈M, then f ∈ N .

2. (M,N)-pushouts and pullbacks alongM-morphisms exist in C. Also,M
and N are stable under (M,N)-pushouts and M-pullbacks.

3. (M,N)-pushouts are (M,N)-van Kampen squares.

Let us denote by Pfin(VN) the category whose objects are the finite subsets
of VN, and whose morphisms are functions (so the category is equivalent to the
usual category of finite sets). Let U : PChem→ Pfin(VN) denote the evident
forgetful functor. We also write U : PChem → Set for the forgetful functor
into the category of sets and functions. Now define a functor F : Pfin(VN)→
PChem by letting F (V) = (V, τα,m0), where τα and m0 are constant functions
sending every element to (α, 0) and 0, respectively. A function f : V → W is
mapped to itself: note that since F (V) does not have any chemical or charged
vertices, all the conditions of Definition 4.1 trivialise, so that any function with
F (V) as the domain is a morphism of chemical graphs.

Proposition 4.18. The functors

F : Pfin(VN) ⇄ PChem : U

are adjoint with F ⊣ U .

Proof. The unit ηV : V → UF (V) is given by the identity, as UF (V) = V .
The counit εA : FU(A) → A is given by the identity function: the conditions
of being a morphism are automatically verified. It is then straightforward to
verify the triangle identities.

Corollary 4.19. The forgetful functor U : PChem → Set preserves all finite
limits that exist in PChem.

Proposition 4.20. The pullbacks along vertex embeddings exist in PChem.
Moreover, the vertex embeddings are stable under pullbacks, and matchings are
stable under E-pullbacks.

Proof. Consider the cospan A
f−→ B

e←− C where e ∈ E . Define the chemical
graph Z as follows:

• VZ := {a ∈ VA : f(a) ∈ e(VC)}

• for all a ∈ VZ , let τAt
Z (a) := τAt

A (a),

18

• for a ∈ Chem(Z), if τ CrgA (a) = τ CrgC (e−1f(a)) =: n, then let τ CrgZ (a) := n,

otherwise let τ CrgZ (a) := 0,

• for a ∈ α(Z), if both a ∈ Crg(A) and e−1f(a) ∈ Crg(C), then let τ
Crg
Z (a) :=

τ
Crg
A (a), otherwise let τ

Crg
Z (a) := 0,

• for a, q ∈ Chem(Z), if mA(a, q) = mC(e−1f(a), e−1f(q)) =: k, let mZ(a, q) :=
k, otherwise let mZ(a, q) := 0,

• for a ∈ α(Z) and q ∈ Chem(Z), if both a ∈ CNA(q) and e−1f(a) ∈
CNC(e−1f(a)), then let mZ(a, q) := 1, otherwise let mZ(a, q) := 0.

Define the map e∗ : Z → A as the identity on vertices, and the map f∗ :
Z → C by the action of e−1f on vertices. Then the resulting square commutes
by construction, and the universal property of a pullback is readily verified.
Evidently, e∗ ∈ E .

If f ∈ M, then f∗(VZ) is ion-closed since f(VA) is, and f∗ preserves all
charges and bonds since f does and by construction of Z, so that f∗ ∈M.

Lemma 4.21. The forgetful functor U : PChem→ Set preserves and reflects
E-pullbacks. In more detail, the commutative square on the left with e, e′ ∈ E is
a pullback in PChem if and only if its image on the right is a pullback in Set:

A B
f ′

C D
f

e′ e

U(A) U(B)
Uf ′

U(C) U(D)
Uf

Ue′ Ue
.

Proof. Preservation is a special case of Corollary 4.19. For reflection, suppose
that the square on the right is a pullback in Set. This means there is a unique

isomorphism from u : U(A) → U(Z) to the pullback of C
f−→ D

e←− B as
constructed in the proof of Proposition 4.20 such that Uf∗ ◦ u = Uf ′ and
Ue∗ ◦ u = Ue′. Using the properties of the pullback and the fact that e′ is an
embedding, one then checks that u is an isomorphism in PChem.

Proposition 4.22. PChem has (E ,M)-pushouts, and the classes E and M
are stable under (E ,M)-pushouts.

Proof. Consider the span B
m←− A

e−→ C where m ∈ M and e ∈ E . Define the
chemical graph Y whose vertex set is that of B together with the complement
of the image of e:

VY := VB ∪ (VC \ e(VA)).

Note that VC\e(VA) only contains α-vertices. The labelling functions are defined
as follows for all b, p ∈ VB and c ∈ VC \ e(VA):

• τAt
Y (b) := τAt

B (b) and τY (c) := τC(c),

• if b ∈ m(A), then τ CrgY (b) :=
∑

d∈em−1(b) τ
Crg
C (d), and τ CrgY (b) := τ CrgB (b)

otherwise,

19

• if b, p ∈ m(Chem(A)), then mY (b, p) := mC(em−1(b), em−1(p)); and if
b ∈ m(Chem(A)) and p ∈ m(α(A)), then

mY (b, p) :=
∑

d∈em−1(p)

mC(em−1(b), d),

and mY (b, p) = mB(b, p) otherwise,

• if b ∈ m(Chem(A)), then mY (b, c) := mC(em−1(b), c) and mY (b, c) := 0
otherwise.

The map e∗ : B → Y is defined as inclusion on vertices, and the map m∗ :
C → Y as me−1 on the image of e, and as inclusion otherwise. Then, by
construction, the resulting square commutes and we have e∗ ∈ E and m∗ ∈M,
and the universal property of a pushout is readily verified.

Lemma 4.23. The forgetful functor U : PChem→ Set preserves and reflects
(E ,M)-pushouts. In more detail, the commutative square on the left with e, e′ ∈
E and m,m′ ∈M is a pushout in PChem if and only if its image on the right
is a pushout in Set:

A B
m

C D
m′

e e′

U(A) U(B)
Um

U(C) U(D)
Um′

Ue Ue′
.

Proof. For preservation, observe that U(Y) is the pushout of U(B)
Um←−− U(A)

Ue−−→
U(C), where Y is the pushout of B

m←− A
e−→ C as constructed in the proof

of Proposition 4.23. For reflection, suppose that the square on the right is a
pushout in Set. This means there is a unique isomorphism from u : U(Y) →
U(D) such that u ◦Um∗ = Um′ and u ◦Ue∗ = Ue′. Using the properties of the
pushout and the facts that e′ is an embedding and m′ is a matching, one then
checks that u is an isomorphism in PChem.

Theorem 4.24. The category PChem is (E ,M)-adhesive.

Proof. It is straightforward to see that both E andM contain all isomorphisms,
and are closed under composition and decomposition.

To see thatM is closed under E-decomposition, suppose that g ∈ E with type
g : B → C and for some composable morphism f : A → B we have gf ∈ M.
The fact that f(VA) is ion-closed follows from ion-closedness of gf(VA) and
from injectivity of g. Since gf preserves the labels of chemical vertices (and of
edges between chemical vertices), and the only charge (edge label) that can be
mapped by g to zero is zero, we conclude that f must preserve the labels of
chemical vertices and of the edges between them. For the last two conditions
of being a matching, let w ∈ f(α(A)) and b ∈ Chem(A). Since gf is a matching
and g is an embedding, we have

τ
Crg
C (gw) =

∑
a∈f−1(w)

τ
Crg
A (a) =: n.

20

If n = 0, then τ CrgC (gw) = τ CrgB (w), so that the desired equality holds. If n < 0,

then τ CrgB (w) ≤ n as f is a morphism, but also n ≤ τ CrgB (w) as g is a morphism,

so that τ CrgB (w) = n and the desired equality holds. The case for n < 0 is
symmetric.

For the last condition, we again use the facts that gf is a matching and g is
an embedding to obtain

mC (g(w), gf(b)) =
∑

a∈f−1(w)

mA(a, b) =: d.

If either d = 0 or w ∈ Chem(B), then mC (g(w), gf(b)) = mB (w, f(b)), so
that the desired equality holds. Hence suppose that d > 0 and w ∈ α(B).
It follows that there is exactly one a ∈ f−1(w) such that mA(a, b) = 1, and
d = mB (w, f(b)) = 1, so that the desired equality holds. Thus indeed f ∈M.

Existence of E-pullbacks, as well as stability of E andM under (E-)pullbacks
was shown in Proposition 4.20. Existence of (E ,M)-pushouts and stability of E
and M under such pushouts is Proposition 4.22. Thus it remains to show that
(E ,M)-pushouts are van Kampen squares. Consider the commutative cube

A′

B′

A

B

g

C ′

Y ′

C

Y

h

m

k

e

f

m∗

m′

m⋆

e∗

e′

e⋆

whose bottom face is a pushout of an embedding e and a matching m, whose
back faces are both pullbacks, and whose all vertical morphisms are embeddings.
We thus have that m∗,m′ ∈ M and e∗, e′ ∈ E . We have to show that the top
face is a pushout if and only if the front faces are pullbacks. By Lemmas 4.21
and 4.23, the top face is a pushout in PChem if and only if it is a pushout
in Set, and the front faces are pullbacks in PChem if and only if they are
pullbacks in Set. Lemma 4.23, the bottom face is a pushout in Set. Since in
Set pushouts along monomorphisms are van Kampen squares [33], we indeed
have that the top face is a pushout in Set if and only if the front faces are
pullbacks in Set, thus completing the proof.

Corollary 4.25 (Pushout complements). The solid diagram below, where e ∈ E
and m ∈ M, can be uniquely completed to a pushout square, with ê ∈ E and
m̂ ∈M:

A B
e

C Z
ê

m m̂
.

21

Proof. The pre-chemical graph Z is defined to have the vertex set VC \m(VA \
e(VB)). The atom labels are inherited from C, and likewise for the charge and
edge labels on VC \m(VA), while on m(VA) the charge and edge labels are those
of B. Uniqueness is a consequence of (E ,M)-adhesivity [35].

5. Chemical Reactions as Double Pushout Rewriting

In this section, we first give a formalisation of chemical reactions using double
pushout rewriting – our first perspective on chemical processes. Our approach is
very similar, and inspired by, that of Andersen, Flamm, Merkle and Stadler [38],
with some important differences, such as having more strict requirements on the
graphs representing molecular entities, and allowing for the free and unpaired
electrons, represented by the symbol α. After this, we characterise all the
possible graph transformations resulting from such double pushout rewriting
as certain partial bijections (Proposition 5.6). This gives rise to our second
perspective on chemical processes – the category of reactions (Definition 5.7).

Definition 5.1 (Reaction scheme). A reaction scheme is a span A
f←− K

g−→ B in
PChem such that A and B are valence-complete and have the same net charge,
f and g are vertex embeddings, and the span is terminal in the subcategory of
spans with boundaries A and B and legs in E .

Example 5.2. The rule shown below appears in the reaction describing glucose
phosphorylation. It is a reaction scheme in the sense of Definition 5.1:

3α

2O

1H

4P

5O

6α

7O−

8O−
1H+

4P

5O

2O3α
6α−

3α

2O

1H

4P

5O

6α

7O−

8O−

7O−

8O− .

Definition 5.3 (Reaction instance). A reaction instance is a double pushout
diagram

A K B

C

f g

m

D E
f ′ g′

m′ m′′

in PChem such that the top span A← K → B is a reaction scheme, m,m′,m′′ ∈
M are matchings, and C and E are chemical graphs.

Example 5.4. The following reaction (glucose phosphorylation) is an instance
of the reaction scheme in Example 5.2; we have labelled the vertices in the images
of matchings on both sides (the sets UA and UB), and we use the convention
from chemistry where an unlabelled vertex is a carbon atom with an appropriate
number of hydrogen atoms attached:

22

OH

OH

OH

HO

O

2O

OHOH

O

OP

O

O−

OP

O

O−

6O4P

5O

7O−

8O−

N

N

N

N

NH2

3C

1H

H

H

OH

OH

OH

HO

O

2O

5O

3C H

H

OHOH

O

OP

O

O−

OP

O

O−

6O−

N

N

N

N

NH21H+

4P 7O−

8O−

UA

UB

.

Note that the graphs appearing as the boundaries of the span of the reaction
scheme are the disjoint unions of the valence completion and charge decomposi-
tion of the graphs in the above reaction (cf. Examples 4.11 and 4.13). We make
this observation precise in Proposition 5.6.

Theorem 5.5. Let C be a chemical graph. Given a matching and a reaction
scheme as below left, the diagram can be uniquely completed to the reaction
instance on the right.

A K B

C

f g

m

A K B

C

f g

m

D E
f ′ g′

m′ m′′

Proof. The pre-chemical graph D can be constructed as the pushout com-
plement (Corollary 4.25). The pre-chemical graph E is then obtained as the
pushout, which exists by Proposition 4.22.

A reaction instance can be presented in a more concrete (yet equivalent)
way, which involves mappings that are not morphisms in PChem.

Proposition 5.6. Let C and E be chemical graphs. The data of a reaction
instance C → E can be equivalently (up to an isomorphism) presented as a
tuple (UC , UE , b, i) where UC ⊆ VC and UE ⊆ VE are matchable subsets with
equal net charge, b : Chem(UC) → Chem(UE) is a bijection preserving the atom
labels, and i : VC \UC → VE \UE is an isomorphism of pre-chemical graphs such
that for all u ∈ Chem(UA) and a ∈ VA \ UA we have mA(u, a) = mB(bu, ia).

Proof. Given a reaction instance

A K B

C

f g

m

D E
f ′ g′

m′ m′′ ,

we obtain the desired tuple as (m(A),m′′(B), b, i), where b and i are both ap-
propriate restrictions of g′(f ′)−1.

Conversely, given a tuple as in the statement of the proposition, we obtain
the following reaction instance

23

U∗
C K U∗

E

C

b̂

m

D E

m′ ,

where m and m′ are the matchings defined from matchable subsets in the proof
of Proposition 4.16. In order to define the graph K, we first note that the
bijection b : Chem(UC)→ Chem(UE) induces an atom label preserving bijection

b̄ : m−1(Chem(C)) ∩ α(U∗
C)→ (m′)−1(Chem(E)) ∩ α(U∗

E)

as follows. For every c ∈ Chem(UC)∩m(α(U∗
C)), we define m−1(c)→ (m′)−1(bc)

by the following procedure:

1. Let Nc := a1, . . . , an and Cc := b1, . . . , bm be lists all the neutral and
charged vertices of m−1(c), respectively. Similarly, let Nbc := c1, . . . , cq
and Cbc := d1, . . . , dp be lists all the neutral and charged vertices of
(m′)−1(bc). Note that we have n + m = p + q.

2. For each i = 1, . . . , n, let ni be the unique covalent neighbour of ai. If
there is a cj ∈ Nbc such that cj ∈ CNU∗

E
(bni), define ai 7→ cj , and remove

ai from Nc and cj from Nbc.

3. For each i = 1, . . . ,m, if there is a dj ∈ Cbc with the same charge as bi
such that b

(
INU∗

C
(bi)

)
= INU∗

E
(dj), define bi 7→ dj , and remove bi from Cc

and dj from Cbc.

4. The remaining vertices in Nc and Cc may be mapped to any remaining
vertices in Nbc and Cbc (as long as we have a bijection).

Next, define the following subset of α-vertices A ⊆ VUC
. For every u ∈

Chem(UC), let Ac
u be any subset of CNC(u) ∩ α(UC) of size

min (|CNC(u) ∩ α(UC)| , |CNE(bu) ∩ α(UE)|) .

Let Ai−
u be any subset of INC(u) ∩ α(UC) ∩ Crg− (UC) of size

min
(∣∣INC(u) ∩ α(UC) ∩ Crg− (UC)

∣∣ , ∣∣INE(bu) ∩ α(UE) ∩ Crg− (UE)
∣∣) .

Similarly, let Ai+
u be any subset of positive ionic α-neighbours of u, whose size

is that of positive ionic α-neighbours of u or positive ionic α-neighbours of b(u),
whichever is smaller. Let A− be any subset of isolated negative α-vertices in
UC , whose size is the smaller of isolated negative α-vertices in UC and isolated
negative α-vertices in UE . The set A+ is defined similarly, but for isolated
positive α-vertices. We then define

A := A− ∪A+ ∪
⋃

u∈Chem(UC)

Ac
u ∪Ai−

u ∪Ai+
u .

Note that there is an injection ι : A → U∗
E that takes each vertex a ∈ A to an

α-vertex ι(a) with the same charge, such that the neighbour of a is mapped by
b to the neighbour of ι(a). We denote by

b̂ : Chem(U∗
C) ∪

(
m−1(Chem(C)) ∩ α(U∗

C)
)
∪A→ U∗

E

the map that acts as b + b̄ + ι on the disjoint summands. We now define the
graph K as follows:

24

• the vertex set is VK := Chem(U∗
C) ∪

(
m−1(Chem(C)) ∩ α(U∗

C)
)
∪A,

• the atom labels are the same as in U∗
C ,

• for every k ∈ VK , if τ CrgU∗
C

(k) = τ CrgU∗
E

(b̂k) =: n, then define τ CrgK (k) := n,

otherwise define τ CrgK (k) := 0,

• for all k, t ∈ VK , if mU∗
C

(k, t) = mU∗
E

(b̂k, b̂t) =: n, then define mK(k, t) :=
n, otherwise define mK(k, t) := 0.

The graph D is then constructed as the pushout complement for both m and
m′.

Proposition 5.6 motivates the following definition:

Definition 5.7 (Category of reactions). We denote by React the category of
reactions, whose

• objects are chemical graphs,

• morphisms A→ B are tuples (UA, UB , b, i), where

– UA ⊆ VA and UB ⊆ VB are subsets with Net (UA) = Net (UB),

– b : Chem(UA)→ Chem(UB) is a bijection preserving the atom labels,

– i : VA \ UA → VB \ UB is an isomorphism of pre-chemical graphs,

such that for all u ∈ Chem(UA) and a ∈ VA \ UA we have

mA(u, a) = mB(bu, ia),

• the composition of (UA, UB , b, i) : A → B and (WB ,WC , c, j) : B → C is
given by

(ZA, ZC , (c + j)(b + i), ji) : A→ C,

where ZA := UA ∪ i−1(WB \ UB)) and ZC := WC ∪ j(UB \WB)),

• for a molecular graph A, the identity is given by (∅,∅, !, idA), where ! is
the unique endomorphism on the empty set.

Note that the composition in React is not the composition in the usual
category of partial bijections: instead, it crucially relies on the fact that there
is an isomorphism between the unchanged parts of the graph. The category
React has a dagger structure: the dagger of (UA, UB , b, i) : A→ B is given by
(UB , UA, b

−1, i−1) : B → A. Given a morphism r ∈ React, we will denote its
dagger by r.

Remark 5.8. Note that the morphisms in React are slightly more general
than tuples arising from reaction schemes in Proposition 5.6. Namely, we do
not require the subsets in a morphism in React to be matchable. This general-
isation is, however, merely technical, as we can always extend any subset to the
smallest matchable one while keeping the same information about which bonds
and charges are reconnected and exchanged. The reason for allowing more mor-
phisms in React is to obtain an exact correspondence with the disconnection
rules (Section 6), which operate only on single edge or vertex at a time, and
hence are unable to capture global conditions, such as being matchable.

25

6. The Category of Disconnection Rules

A disconnection rule is a partial endofunction on the set of chemical graphs.
We define four classes of disconnection rules, all of which have a clear chemi-
cal significance: two versions of electron detachment, ionic bond breaking and
covalent bond breaking. These local chemical transformations are our third per-
spective on chemical processes. The reader may want to check Figure 5 before
Definition 6.1 below, as it gives an intuitive explanation of our approach.

For the purposes of mathematical precision, our set of four disconnection
rules is more fine-grained than what one would see in a typical textbook on
retrosynthesis, where movement of electrons is usually implicitly modelled in the
same step as disconnecting a bond, rather than including electron detachment
as a separate step (see, for instance, the discussion on the choice of polarity
in [1, p. 9]).

We treat the disconnection rules as syntax, which generate the terms (Defi-
nition 6.2), whose equivalence classes under the equations of Figure 7 form the
morphisms in the disconnection category (Definition 6.5). The payoff such a syn-
tactic presentation is an axiomatic view of chemical reactions: in Section 7, we
construct a functor from the disconnection category to the category of reactions,
and show that every reaction can be represented as a sequence of disconnection
rules in an essentially unique way.

uXn

bα−

Eu
ab uXn+1

aαn < 0
X ∈ At \ {α}

uXn

vα−

Euv uXn+1

n ≥ 0
X ∈ At \ {α}

vα

uXn

Iuv

vY−n

uXn

vY−n

uX
Cuv

ab

vY

n

n /∈ {0, i}
uX

vY

n− 1

aα

bα

X, Y ∈ At \ {α}

Electron detachment (negative charge) Electron detachment (nonnegative charge)

Ionic bond breaking Covalent bond breaking

n ̸= 0

Figure 5: The four disconnection rules.

Definition 6.1 (Disconnection rules). Let u, v, a, b ∈ VN be pairwise distinct
vertex names. Let U ∈ {u, uv} and D ∈ {∅, ab} range over the specified lists of
vertex names. The four disconnection rules are defined by the tables in Figure 6
as follows: a chemical graph A is in the domain of dUD if U ⊆ VA but D∩VA = ∅,
and the additional conditions of the first column (top table) hold; the output
chemical graph d(A) has the vertex set VA ∪D, and the labelling functions on
U ∪D are defined by the remaining columns (vertex labelling in the top table,
edge labelling in the bottom table), while the labelling functions agree with
those of A on VA \ U .

26

dUD A ∈ dom(d) τ
Crg

d(A)(u) τ
Crg

d(A)(v) τd(A)(a) τd(A)(b)

Eu
ab

u ∈ Chem(A)
u ∈ Crg− (A)

τ CrgA (u) + 1 N/A (α, 0) (α,−1)

Euv

u ∈ Chem(A)
u /∈ Crg− (A)
v ∈ α(A)

mA(u, v) = 1

τ CrgA (u) + 1 −1 N/A N/A

Iuv
mA(u, v) = i

u ∈ Crg+ (A)
v ∈ Crg− (A)

τ CrgA (u) τ CrgA (v) N/A N/A

Cuv
ab

u, v ∈ Chem(A)
mA(u, v) /∈ {0, i} τ CrgA (u) τ CrgA (v) (α, 0) (α, 0)

dUD md(A)(u, v) md(A)(u, a) md(A)(v, b)

Eu
ab N/A 1 N/A

Euv 0 N/A N/A
Iuv 0 N/A N/A
Cuv

ab mA(u, v)− 1 1 1

Figure 6: The disconnection rules defined as partial functions.

Note that the disconnection rules look a lot like (a subset of) reaction
schemes (Definition 5.1): indeed, each disconnection rule can be realised as
a collection of reaction schemes. In Section 5, we already saw that reactions
arise from reaction schemes (Proposition 5.6). In Section 7, we shall strengthen
this result by showing that the disconnection rules generate and axiomatise all
the reactions as morphisms in React.

We observe that each disconnection rule is injective (as a partial function),
and hence has an inverse partial function. We use the disconnection rules to
define the terms, which will be used to define the morphisms in the disconnection
category.

Definition 6.2 (Terms). The set of terms with types is generated by the fol-
lowing recursive procedure:

• for every chemical graph A, let id : A→ A be a term,

• for every chemical graph A and every u ∈ VA, let Su : A→ A be a term,

• for every chemical graph A, every u ∈ α(A) and every v ∈ VN such that
v /∈ VA \ {u}, let Ru7→v : A→ A(u 7→ v) be a term,

• for every disconnection rule d and every chemical graph A in the domain
of d, both d : A→ d(A) and d̄ : d(A)→ A are terms,

• if t : A→ B and s : B → C are terms, then t; s : A→ C is a term.

The first and the fifth items take care of the usual categorical structure, while
the terms Su generated by the second item correspond to “touching” the vertex
u without changing the structure of the graph, and the terms Ru7→v rename an
existing α-vertex u into a fresh vertex v.

27

We refer to the terms of the form d : A→ B and d̄ : B → A generated by the
fourth item as disconnections and connections, respectively. More specifically,
we use the symbols E<0, E≥0, I and C to denote the disconnections corre-
sponding to the specific disconnection rules, and similarly the symbols Ē<0,
Ē≥0, Ī and C̄ refer to the corresponding connections. Similarly, S and R refer
to the terms generated by the second and third items. The same letters in the
typewriter type font (E<0, E≥0, I, C, Ē<0, Ē≥0, Ī, S and R) are used to denote a
sequence of terms of the corresponding kind.

Let us define the endofunction () on terms by the following recursion:

• (id : A→ A) 7→ (id : A→ A),

• (Su : A→ A) 7→ (Su : A→ A),

• (Ru 7→v : A→ A(u 7→ v)) 7→ (Rv 7→u : A(u 7→ v)→ A),

• (d : A→ B) 7→
(
d̄ : B → A

)
,

•
(
d̄ : A→ B

)
7→ (d : B → A),

• t; s := s; t.

For defining equations, it will be useful to allow untyped terms: the equations
(Figure 7) capture interactions between local graph transformations (i.e. the
disconnection rules), so that the same equation should hold for a whole class of
chemical graphs.

Definition 6.3 (Untyped terms, well-typedness). An untyped term is an ele-
ment of the free monoid on the set

{id, Su, Ra7→b, Eua, Eu
ab, C

uv
ab , I

uv, Ēua, Ēu
ab, C̄

uv
ab , Ī

uv : u, v, a, b ∈ VN},

where we use the symbol ; to indicate the multiplication of the monoid.
Given an untyped term t and chemical graphs A and B, we say that the

expression t : A → B is well-typed if it is in fact a term, that is, if it can be
constructed using the recursive procedure of Definition 6.2.

We define the binary relation ≤ on the set of untyped terms by letting t ≤ s

if whenever t : A→ B is well-typed, then so is s : A→ B.
The endofunction () on the untyped terms is defined in exactly the same way

as for the terms with types, simply ignoring the types. Note that t : A → B
is well-typed if and only if t : B → A is. Moreover, observe that ≤ defines
a preorder on the untyped terms. Consequently, we have t ≤ s if and only if
t ≤ s.

Given an untyped term t, there are either no chemical graphs such that
t : A → B is well-typed, or there are infinitely many such graphs. The latter
case is the reason for introducing the untyped terms: we want certain equalities
to hold whenever both sides are well-typed.

Definition 6.4 (Term equality). Let ≈ be an equivalence relation on the set of
untyped terms. This induces the equivalence relation ≡ on the set of terms as
follows: for two terms t, s : A → B with the same type, we let t ≡ s if either
t ≈ s or t ≈ s as untyped terms.

28

Given an equivalence relation ≈ on the untyped terms, let us introduce the
following shorthand binary relations on the untyped terms:

• t ≲ s if t ≈ s and t ≤ s,

• t ≃ s if t ≲ s and s ≲ t.

Definition 6.5 (Disconnection category). The disconnection category Disc has
as objects the chemical graphs. The set of morphisms Disc(A,B) is given
by the terms of type A → B, subject to the usual associativity and unitality
equations of a category, together with the identities ≡ induced (in the sense of
Definition 6.4) by the equivalence relation defined in Figure 7.

Note that the assignment () : Disc→ Disc is functorial, thus making Disc
a dagger category [39, 40].

Proposition 6.6. The following identities are derivable in Disc:

dUD[a];S
a ≃ dUD[a], (35)

d̄Uab; d
U
cd ≈ SU ;Ra7→j ;Rb 7→d;Rj 7→c, (36)

Rz 7→c;Rw 7→d; dUab ≈ Rz 7→a;Rw 7→b; dUcd, (37)

Rz 7→c; dUab ≈ Rz 7→a; dUcb, (38)

Rw 7→d; dUab ≈ Rw 7→b; dUad, (39)

dUab; d
U
cd ≃ dUad; dUcb. (40)

Proof. We compute (35) by applying equations (3) and (9):

dUD[a];S
a ≃ dUD[a];R

a 7→a ≃ dUD[a].

Equality (36) is derived as follows:

d̄uvab ; duvcd ≈ duvij ; d̄uvab ;Ri 7→c;Rj 7→d (by (10))

≈ Su;Sv;Ra7→i;Rb 7→j ;Ri 7→c;Rj 7→d (by (11))

≈ Su;Sv;Ra7→j ;Rb 7→d;Rj 7→c. (by (2) and (1))

For (37), we first use (36) to get

duvcd ; d̄uvzw; duvab ≃ duvcd ;Su;Sv;Rz 7→a;Rw 7→b,

where on the right-hand side we used (2) and (1). Observing that (11) applies
on the left-hand side, and simplifying using (5), (21) and (7), we obtain pre-
cisely (37). Identities (38) and (39) are derived similarly, by letting w = d and
z = c, respectively.

Identity (40) is derived as follows:

dUab; d
U
cd ≃ dUad;Rd7→b; dUcd (by (9))

≃ dUad;Rd7→d; dUcb (by (39))

≃ dUad; dUcb. (by (9))

29

Ru 7→z;Rz 7→w ≲ Ru7→w (1)

Ru 7→z;Rv 7→w ≈ Rv 7→w;Ru 7→z (2)

Ru7→u ≲ Su (3)

Rb7→z;Ra 7→b ≈ Sb;Ra7→z (4)

Ru 7→v;Sw ≈ Sw;Ru 7→v (5)

Ru 7→v;Sv ≃ Su;Ru7→v ≃ Ru7→v (6)

Ru7→v; dUD ≈ dUD;Ru7→v (7)

Ru7→v;Ewv ≃ Ewu;Ru7→v (8)

dUD[u];R
u7→v ≃ dUD[v/u] (9)

dU
′

ij ; h̄U
ab;R

i 7→c;Rj 7→d ≲ h̄U
ab; d

U ′

cd (10)

dUab; d̄
U
cd ≈ SU ;Rc7→a;Rd 7→b (11)

dUab; d̄
U
cb ≈ SU ;Rc7→a (12)

dUab; d̄
U
ad ≈ SU ;Rd7→b (13)

dUD; d̄UD ≲ SU (14)

d̄UD; dUD ≲ SU ;SD (15)

Eua; Ēub ≈ Su;Ra 7→z;Rb7→a;Rz 7→b (16)

d̄uv; dwz ≈ dwz; d̄uv (17)

Su;Sv ≃ Sv;Su (18)

Su;Su ≃ Su (19)

Su; dUD ≲ dUD;Su (20)

d
U [v]
D ;Sv ≃ d

U [v]
D (21)

Cuv
ab ≃ Cvu

ba (22)

dUD; dU
′

D′ ≃ dU
′

D′ ; dUD (23)

Cuv
ab ; Iwz ≃ Iwz;Cuv

ab (24)

Eu
ab; I

wz ≲ Iwz;Eu
ab (25)

Euv; Iwz ≲ Iwz;Euv (26)

Ēuv; Iwz ≲ Iwz; Ēuv (27)

Ēu
ab; I

wz ≲ Iwz; Ēu
ab (28)

C̄uv
ab ; Iwz ≲ Iwz; C̄uv

ab (29)

Eu
ab;C

wz
cd ≃ Cwz

cd ;Eu
ab (30)

Euv;Cwz
cd ≲ Cwz

cd ;Euv (31)

Ēuv;Cwz
cd ≃ Cwz

cd ; Ēuv (32)

Euv;Ew
cd ≲ Ew

cd;Euv (33)

Ēuv;Ew
cd ≃ Ew

cd; Ēuv (34)

Figure 7: The equivalence relation ≈ inducing the identities in the disconnection category.
Here d and h range over {E,C, I}, while SU stands for the sequence Su;Sw if U = uw.
Given vertex names a, b ∈ VN, the notation D[a] means a occurs in D, and D[b/a] means
the occurrence of a in D is replaced with b. Note that we use the shorthand relations ≲ and
≃: these are strictly speaking not part of the definition, but are used to provide the extra
information of when well-typedness of one side of an identity implies well-typedness of the
other.

30

6.1. Normal Form

In this subsection, we define a normal form (Definition 6.11), and show that
every term is equal to a term in a normal form under the equalities of Disc
(Proposition 6.12). We also identify a class of syntactic manipulations of terms
in a normal form (Definition 6.13) that both keep the normal form and preserve
equality (Lemma 6.14). These results are used in the next section to prove
completeness.

Definition 6.7 (ICE-form). We say that a term is in an ICE-form if it is
either an identity term, or if it has the following structure:

I; C; E<0; E≥0; Ē≥0; Ē<0; C̄; Ī; R; S,

where every letter is a sequence of generating terms of the corresponding kind.

Proposition 6.8. Any term is equal to a term in an ICE-form.

Proof sketch. The proof proceeds by repeated inductions: one first shows that
all I-terms can always be commuted to the left, then that all C-terms can be
commuted to the left of anything that is not an I-term, and so on. We give the
full details of the induction in the Appendix (Appendix A.1-Appendix A.18).

Definition 6.9 (Renaming form). A well-typed sequence of renaming terms
R : H → G is in a renaming form if there are sets A = {a1, . . . , an}, B =
{b1, . . . , bn}, C = {c1, . . . , cm} and D = {d1, . . . , dm} of vertex names such
that

(1) R can be split into two sequences R = A; B with

A = Ra1 7→b1 ; . . . ;Ran 7→bn and B = Rc1 7→d1 ; . . . ;Rcm 7→dm ,

where B can be possibly empty,

(2) A ∩B = ∅,

(3) C ⊆ B,

(4) D ⊆ A,

(5) if ci ∈ C and bj ∈ B is the unique element such that bj = ci, then
NH(aj) ̸= NH(di).

Lemma 6.10. Any well-typed sequence of renaming terms is equal to a term
R; S, where R = A; B is in a renaming form and S is a sequence of S-terms.

Proof. The idea is that if a vertex a is to be renamed to b, then a ∈ A, and we
have two cases: (1) b does not already occur in the original chemical graph, and
(2) b does occur in the original graph. If (1), then Ra 7→b ∈ A and b ∈ B \ C.
If (2), then we first rename a using some “dummy” name c, so that Ra7→c ∈ A,
Rc7→b ∈ B, c ∈ C and b ∈ D. Note that condition (4) of the renaming form is
satisfied, as b must itself be renamed in order for the vertex name become free.
Any term of the form Ra 7→a is replaced by Sa. The formal proof proceeds by
induction on the length of the original sequence.

The term Ra7→b is equal to Sa if a = b, or is already in a renaming form by
taking A = {a}, B = {b} and C = D = ∅ if a ̸= b.

31

Suppose that the statement of the lemma holds for all sequences of renaming
terms of length at most n. Let R be such a sequence of length n such that R;Ra 7→b

is well-typed. By the inductive hypothesis, we may assume that R = A; B; S
where A; B is a renaming form with vertex name sets A, B, C and D as in
Definition 6.9. Using the equations for S- and R-terms, we may commute Ra7→b

past S, possibly changing the vertex name a, so that it suffices to show that the
lemma holds for A; B;Ra7→b. If a = b, the sequence is equal to A; B;Sa and we are
done; hence assume that a ̸= b. Note that it follows that a /∈ A \D and a /∈ C,
as every vertex name in A \ D or C is removed, without being reintroduced.
Similarly, we have that b /∈ D and b /∈ B \ C. Moreover, if b ∈ C, rename the
occurrence of b in both A and B with a fresh vertex name, updating the sets C
and B accordingly. Thus we may assume that b /∈ B. The remaining cases are
as follows.
Case 1: a /∈ A ∪B.

Subcase 1.1: b /∈ A. We rewrite the term to A;Ra7→b; B and update the sets
A 7→ A ∪ {a} and B 7→ B ∪ {b}.

Subcase 1.2: b ∈ A. It follows that b ∈ A \D, so that Rb 7→z ∈ A and a, b
do not appear in B. If N(a) ̸= N(b), let c be a fresh vertex name. We rewrite
the term to A;Ra7→c;Rc7→b; B and update the sets A 7→ A ∪ {a}, B 7→ B ∪ {c},
C 7→ C ∪ {c} and D 7→ D ∪ {b}. If N(a) = N(b), we use equation (4) to rewrite
Rb7→z;Ra 7→b to Sb;Ra 7→z, which reduces the number of R-terms to n, so that
the inductive hypothesis applies.
Case 2: a ∈ A. It follows that a ∈ D. Now Ra 7→b commutes with all other terms
in B except for the unique term Rci 7→di where di = a. But Rci 7→a;Ra7→b ≡ Rci 7→b,
which reduces the length of the sequence to n, so it is has a renaming form by
the inductive hypothesis.
Case 3: a ∈ B. It follows that a ∈ B \ C.

Subcase 3.1: b /∈ A. Now Ra 7→b commutes with all the terms in B, and
with all other terms in A except for the unique term Rai 7→bi where bi = a. But
Rai 7→a;Ra 7→b ≡ Rai 7→b, which reduces the length of the sequence to n, so it is
has a renaming form by the inductive hypothesis.

Subcase 3.2: b ∈ A. It follows that b ∈ A \D. Now Ra 7→b commutes with
all the terms in B, and with all other terms in A except for the terms Rai 7→a

and Rb 7→bj . There are two options: (1) ai = b and bj = a, so that these are
the same term, (2) the terms are distinct, in which case they commute. In both
cases, we use the substitution Rai 7→a;Ra7→b ≡ Rai 7→b to reduce the length of the
sequence, so that the inductive hypothesis applies.

This completes the induction.

A term is said to be in an ICER-form if it is in an ICE-form whose sequence
of renaming terms is in a renaming form (or is empty).

Definition 6.11 (Normal form). Let

t = I; C; E<0; E≥0; Ē≥0; Ē<0; C̄; Ī; A; B; S

be a term in an ICER-form. Let us denote the sets of vertex names in the
renaming form by At, Bt, Ct and Dt. Let us additionally define the following
sets of vertex names occurring in t:

• Dadd
t :=

{
a ∈ VN : dUD[a] ∈ t

}
– the vertex names appearing as subscripts

in the disconnections,

32

• Dremove
t :=

{
a ∈ VN : d̄UD[a] ∈ t

}
– the vertex names appearing as sub-

scripts in the connections,

• Ut :=
{
v ∈ VN : d

U [v]
D ∈ t or d̄

U [v]
D ∈ t

}
– the vertex names appearing as

superscripts of the (dis)connections,

• St := {u ∈ VN : Su ∈ t} – the vertex names appearing in the S-terms.

We say that a term t is in a normal form if it is in an ICER-form as above,
and additionally the following conditions hold:

(1) for every u ∈ St, the term Su occurs in t exactly once,

(2) (Ut ∪At ∪Bt) ∩ St = ∅,

(3) Dadd
t \Dremove

t ⊆ At \Dt,

(4) Dadd
t ∩Bt = ∅,

(5) if a connection d̄UD[a] : A → B and a renaming term Rz 7→a both occur,

then A is not in the domain of d̄UD[z/a],

(6) if d ̸= I and a disconnection dUD occurs in t, then the connections d̄UF and
d̄U

r

F do not occur in t for any F (here Ur denotes the reverse string),

(7) if the disconnection Euv occurs in t, then for any vertex name w ∈ VN,
the connection Ēuw does not occur in t,

(8) if the disconnection Iuv and the connection Īuv both occur in t, then one
of the terms Ev

D, Ēv
D, Eva or Ēva occurs in t.

Proposition 6.12. In Disc, any term is equal to a term in normal form.

Proof. By Propositions 6.8 and 6.10, every term is equal to a term in an ICER-
form: let us fix such a term

t = I; C; E<0; E≥0; Ē≥0; Ē<0; C̄; Ī; A; B; S.

Conditions (1) and (2) are obtained by absorbing the “excess” S-terms into
other terms using equations (6), (19), (21) and (35). Conditions (3) and (4) are
obtained by treating all the vertex names in Dadd

t as “dummy” names, which
are removed either by a connection or a renaming term.

For (5), suppose that d̄UD[a] : A→ B and Rz 7→a both occur, and moreover A

is in the domain of d̄UD[z/a]. We commute the renaming term to the left to obtain

d̄UD[a];R
z 7→a. But this is equal to d̄UD[z/a];R

a 7→a by equations (38) and (39), which
gets rid of the renaming term by Ra 7→a ≡ Sa.

For (6) and (7), we consider the three cases separately.
Case 1: Euv and Ēuw occur in t. We commute the terms so that they occur
one after the other Euv; Ēuw, which by equations (14) and (16) is equal to
some combination of S- and R-terms. Noticing that the rewriting procedure to
obtain an ICE-form either commutes or absorbs S- and R-terms (specifically,
the results from Lemma Appendix A.9 onwards apply), we conclude that t has
an ICE-form without Euv and Ēuw.

33

Case 2: Eu
ab and Ēu

cd occur in t. In combination with Case 1, it follows that
the terms Euv and Ēuw do not occur, so that there are no obstructions for com-
muting Eu

ab next to Ēu
cd, obtaining Eu

ab; Ē
u
cd. By equations (11), (12) and (13),

this is equal to some combination of S- and R-terms, which we commute to the
right as in Case 1.
Case 3: Cuv

ab and either C̄uv
cd or C̄vu

cd occur in t. The latter case simply reduces
to the former by equation (22). Thus suppose that C̄uv

cd occurs. First, we use
equation (30) to commute Cuv

ab to the right past all the E<0-terms, and C̄uv
cd

to the left past all the Ē<0-terms. Next, we commute any terms of the form
Eui and Evj to the right past the Ē≥0-terms and C̄uv

cd using the fact that by
Case 1 the terms Ēui and Ēvj do not occur, together with the equations (17)
and (32). Now there are no obstructions for commuting Cuv

ab to the right past all
the E≥0- and Ē≥0-terms, obtaining Cuv

ab ; C̄uv
cd . As in Case 2, equations (11), (12)

and (13) yield that this is equal to some combination of S- and R-terms, which
we commute to the right as in Case 1. Finally, we return the terms of the form
Eui and Evj back to the left past all the Ē≥0-terms.

For (8), suppose that both Iuv and Īuv occur in t such that no E- or Ē term
containing u occurs. It follows that no E- or Ē term containing v occurs either:
application of Īuv requires for u and v to have equal and opposite charge, so if
the charge of u is unchanged, so is the charge of v; moreover, by (6) and (7), we
may assume that no change can be reversed, so that we indeed cannot have any
E- or Ē term containing v. But now there are no obstructions for commuting
Iuv all the way to the right until we obtain Iuv; Īuv, which is equal to Su;Sv

by (14).

Definition 6.13 (Normal form equivalence). Let

t = I; C; E<0; E≥0; Ē≥0; Ē<0; C̄; Ī; A; B; S

be a term in a normal form. Define the following syntactic manipulations of t:

1. commuting the terms inside each of the named sequences in the normal
form,

2. permuting vertex names in C-terms: if the term Cuv
ab occurs, we may

substitute it with Cvu
ba ,

3. if d ∈ {C,E, C̄, Ē} such that dUab; d
U
cd occurs, we may substitute dUab; d

U
cd 7→

dUad; dUcb,

4. renaming of vertices that are introduced and removed: if a ∈ Dadd
t ∪ Ct

and z ∈ VN does not occur in t or its domain, then we may substitute
t 7→ t[z/a],

5. exchanging vertex names between renaming terms: if both Ra7→b and Rc7→d

occur in A such that N(a) = N(c), we may swap a and c,

6. exchanging vertex names between connections and renaming terms: if
d ∈ {E,C}, and d̄UD[a] : A → B and Rz 7→b both occur such that A is

in the domain of d̄UD[z/a], then we may substitute d̄UD[a] 7→ d̄UD[z/a] and

Rz 7→b 7→ Ra 7→b.

34

We say that two terms t and s in a normal form are equivalent, written t ∼ s, if
one can be obtained from the other by a sequence of the syntactic manipulations
defined above.

Observing that each syntactic manipulation in Definition 6.13 is reversible,
we see that ∼ is an equivalence relation on the set of terms in normal form.

Lemma 6.14. Let t and s be terms in normal forms such that t ∼ s. Then
t ≡ s.

Proof. This follows by noticing that every syntactic manipulation of Defini-
tion 6.13 keeps the term in a normal form, and moreover preserves the equality
≡:

1. the terms may be commuted by equations (23), (2) and (18),

2. vertex names in C-terms may be permuted by (22),

3. the indices in repeated (dis)connections may be exchanged by (40),

4. if a ∈ Dadd
t , so that there is a disconnection dUD[a], we use equation (9)

to obtain dUD[a] ≡ dUD[z/a];R
z 7→a to introduce the desired fresh variable z;

the renaming term can then be absorbed into the second occurrence of a,
hence replacing a with z (the case when a ∈ Ct is similar),

5. the exchange of α-vertices with the same neighbour is obtained by equa-
tion (4):

Ra 7→b;Rc7→d ≡ Sc;Ra7→b;Rc7→d ≡ Rc7→b;Ra7→c;Rc 7→d ≡ Rc7→b;Ra 7→d,

6. the last syntactic manipulation is obtained by equations (38) and (39).

7. From Disconnections to Reactions, Functorially

This section establishes a tight link between the category of disconnection
rules (Definition 6.5) and the category of reactions (Definition 5.7) by construct-
ing a functor R : Disc → React, establishing soundness of the disconnection
rules with respect to the reactions. Moreover, we prove that R is faithful and
full up to isomorphism: a fact that entails completeness and universality (Theo-
rems 7.3 and 7.4). In combination, the results of this section allow for algebraic
reasoning about the reactions using the equations for the disconnection rules
(Figure 7).

We define a function R from terms to morphisms in React as follows. Given
a term t : A→ B, the morphism R(t) : A→ B has the form

R(R1(t), R2(t), id, id),

where id : Chem(R1(t)) → Chem(R2(t)) and id : VA \ R1(t) → VB \ R2(t)
are both identity maps. Since all the terms are mapped to morphisms whose
bijection and isomorphism parts are the identities, we omit these, and simply

35

write R(t) = (R1(t), R2(t)). The recursive definition of this mapping is given
below:

R(idA) := (∅,∅) R(Euv) := ({u, v}, {u, v})
R (Su) := ({u}, {u}) R(Iuv) := ({u, v}, {u, v})

R (Ru7→v) := ({u}, {v}) R(Cuv
ab) := ({u, v}, {u, v, a, b})

R(Eu
ab) := ({u}, {u, a, b}) R

(
d̄uvab

)
:= R (duvab)

R(t; s) := R(t);R(s).

Observe that for all the disconnections we have R(dUD) = (U,U ∪D).
Soundness of disconnection rules with respect to reactions is expressed as

functoriality:

Proposition 7.1. The assignment R : Disc→ React is a dagger functor.

Proof. Functoriality and preservation of dagger structure follow immediately
from the definition. We have to show that R preserves the equalities in Disc,
generated by the identities in Figure 7. Most of these follow immediately by
assuming that the expressions on both sides of the equality have the same type,
and showing that they are mapped to the same pair of sets by R. Hence we only
give the cases that are less obvious or require more computation. To further
simplify the notation, we omit the curly brackets of set-builder notation as well
as the commas separating vertex names from each other: so e.g. (uv, uvab)
stands for ({u, v}, {u, v, a, b}).

For (7), suppose that Ru 7→v; dUD ≡ dUD;Ru 7→v. In particular, it follows that
u, v /∈ U ∪ D. Let us write R(dUD) = (R1, R2), so that u, v /∈ R1, R2. We use
this to show that both sides of the equality evaluate to the same map:

(u, v); (R1, R2) = ({u} ∪R1, R2 ∪ {v}) = (R1, R2); (u, v).

For (10), suppose that dU
′

ij ; h̄U
ab;R

i7→c;Rj 7→d ≡ h̄U
ab; d

U ′

cd . Denote R(dU
′

ij) =

(u′v′, u′v′ij), R(dU
′

cd) = (u′v′, u′v′cd) and R(h̄U
ab) = (uvab, uv). Note that d and

h are not E≥0-terms, whence it follows that i, j /∈ U and a, b /∈ U ′. From the fact
that the left-hand side is defined, we obtain that {i, j} and {a, b} are disjoint.
The left-hand side is thus translated to

(u′v′, u′v′ij); (uvab, uv); (i, c); (j, d) = (u′v′uvab, uvu′v′ij); (i, c); (j, d)

= (u′v′uvab, cuvu′v′j); (j, d)

= (u′v′uvab, dcuvu′v′)

= (uvu′v′ab, uvu′v′cd)

= (uvab, uv); (u′v′, u′v′cd),

which we recognise as the translation of the right-hand side.
For (16), suppose Eua; Ēub ≡ Su;Ra7→z;Rb7→a;Rz 7→b. We start from the

translation of the right-hand side:

(u, u); (a, z); (b, a); (z, b) = (ua, zu); (bz, ba)

= (uab, bau)

= (uab, uba)

= (ua, ua); (ub, ub),

36

which we recognise as the translation of the left-hand side.
For (23), write R(dUD) = (U,U ∪D) and R(dU

′

D′) = (U ′, U ′ ∪D′), so that we
get

R(dUD; dU
′

D′) = (U ∪ U ′, U ∪ U ′ ∪D ∪D′) = R(dU
′

D′ ; dUD).

Recall the syntactic manipulations of terms in normal form we introduced
in Definition 6.13. We have seen that these manipulations preserve equality
(Lemma 6.14). The following lemma is the core of the completeness argument.

Lemma 7.2. Let t and s be terms in a normal form such that R(t) = R(s).
Then t ∼ s.

Proof. Let us write

t = It; Ct; E
<0
t ; E≥0

t ; Ē≥0
t ; Ē<0

t ; C̄t; Īt; At; Bt; St,

s = Is; Cs; E
<0
s ; E≥0

s ; Ē≥0
s ; Ē<0

s ; C̄s; Īs; As; Bs; Ss.

Similarly, let us denote the vertex name sets in the respective renaming forms
by At, Bt, Ct, Dt and As, Bs, Cs, Ds. Let us denote the morphism R(t) = R(s)
by (R1, R2) : A→ B.

First, we observe that if Eua ∈ E
≥0
t , then condition (7) of normal form

(Definition 6.11) implies that the charge of u cannot be increased, whence there
is a vertex name b ∈ VN such that Eub ∈ E≥0

s . Similarly, by condition (6) of
normal form, if Eu

ab ∈ E<0
t , then Eu

cd ∈ E<0
s for some c, d ∈ VN; and if Cuv

ab ∈ Ct,
then Cuv

cd ∈ Cs for some c, d ∈ VN. By condition (8) of normal form, if Iuv ∈ It
then Iuv ∈ Is. Since the connections cannot be undoing the disconnections,
a similar inclusion up to α-vertices holds for them. Thus we obtain that the
sequences of disconnections and connections must coincide, up to renaming the
α-vertices.

Next, suppose that Ra 7→b ∈ At, so that a ∈ At and b ∈ Bt. There are four
cases.
Case 1: a /∈ Dadd

t and b /∈ Ct. This implies that a ∈ R1 and b ∈ R2. Moreover,
if b ∈ R1, then condition (5) of normal form yields that N(a) ̸= N(b). It follows
that either Ra 7→b ∈ As, or both d̄UD[a] and Rz 7→b occur in s such that d̄UD[z/a] is
defined. But in the latter case the vertex names a and z may be exchanged by
syntactic manipulation 6 (Definition 6.13), so that we may assume Ra 7→b ∈ As.
Case 2: a /∈ Dadd

t and b ∈ Ct. This means that Rb 7→d ∈ Bt for some d ∈ Dt,
and for some x ∈ VN, we have Rd7→x ∈ At. Condition (3) of normal form
implies that d /∈ Dadd

t , so that we have a ∈ R1 and d ∈ R1 ∩R2. If x /∈ Ct, then
by Case 1, Rd7→x ∈ As, so that also Ra 7→z ∈ As and Rz 7→d ∈ Bs for some z ∈ VN.
If x ∈ Ct, then we inductively repeat Case 2. By syntactic manipulation 4, we
may assume that Ra7→b ∈ As and Rb 7→d ∈ Bs.
Case 3: a ∈ Dadd

t and b /∈ Ct. Thus there is a disconnection dUD[a] ∈ t, so

that dUD[x/a] ∈ s for some x ∈ VN. This implies a /∈ R1 ∪ R2 and b ∈ R2. As

in Case 1, it follows that Rz 7→b ∈ As for some z ∈ VN. Moreover, in this case
we must have N(x) = N(z), whence by syntactic manipulation 5 we may assume
that Rx 7→b ∈ As with x ∈ Dadd

s . By syntactic manipulation 4, we may assume
that Ra 7→b ∈ As and dUD[a] ∈ s.

37

Case 4: a ∈ Dadd
t and b ∈ Ct. We thus have a, b /∈ R1 ∪ R2. This means

that Rb 7→d ∈ Bt for some d ∈ Dt, so that Rd7→x ∈ At for some x ∈ VN.
Condition (3) of normal form implies that d /∈ Dadd

t , so that d ∈ R1 ∩ R2

and either Case 1 or Case 2 applies to Rd7→x. In both cases we conclude that
Rd 7→x ∈ As. Since d ∈ R2, we have Rw 7→d ∈ Bs for some w ∈ VN. Since there is
a disconnection dUD[a] ∈ t, we have dUD[y/a] ∈ s for some y ∈ VN. Note that we

have N(y) = N(w). Consequently, by syntactic manipulation 5, we may assume
that Ry 7→w ∈ As with y ∈ Dadd

s and w ∈ Cs. By syntactic manipulation 4, we
may assume that Ra7→b ∈ As, R

b7→d ∈ Bs and dUD[a] ∈ s.

Thus we have shown that t and s have the same renaming sequences (up
to ∼), and up to the syntactic manipulations, Dadd

t = Dadd
s and Dremove

t =
Dremove

s .
If Su ∈ St, then u ∈ R1 ∩ R2 and, by conditions (1) and (2) of normal

form, u does not occur anywhere else in t. The argument so far entails that
u /∈ Us ∪As ∪Bs, so that Su ∈ Ss. Thus St = Ss.

Now the only difference left between t and s is in which order the vertex
names are introduced and removed. This is taken care of precisely by syntactic
manipulations 1 and 3.

Combining the above lemma with the results from the previous section, we
conclude that the functor R : Disc → React is faithful. We spell this out in
detail in the following:

Theorem 7.3 (Completeness). For all terms t and s, we have t ≡ s in Disc
if and only if R(t) = R(s) in React.

Proof. The ‘only if’ direction is functoriality (Proposition 7.1). The ‘if’ direc-
tion follows from the fact that every term is equal to a term in normal form
(Proposition 6.12) and from Lemmas 7.2 and 6.14.

The argument for universality turns out to be much simpler than that for
completeness. However, in combination with Theorem 7.3, it gives a rather
strong representation result for reactions: not only can every reaction be de-
composed into a sequence of disconnection rules, but this sequence is also unique,
up to changing the vertex names and up to the equations in Disc. In abstract
terms, the statement of universality is that the functor R : Disc → React is
full up to isomorphism in React. As for completeness, we spell out the details:

Theorem 7.4 (Universality). Given a reaction r : A → C in React, there is
a term t : A→ B in Disc and an isomorphism ι : B

∼−→ C in React such that
R(t); ι = r.

Proof. Observe that every reaction r : A→ C factorises as

(UA, UB , id, id); (∅,∅, !, ι),

where (UA, UB) : A → B is some reaction and ι : B → C is an isomorphism
of labelled graphs. Now, we may disconnect all possible bonds inside UA, and
then connect all possible bonds to obtain UB . The fact that UA and UB have
the same atom vertices and the same net charge guarantee that this can always

38

be done. Precisely, the sought-after term t : A→ B is then given by

∏
u∈Crg+(UA)

v∈Crg−(UA)

(Iuv)
ion(mA(u,v))

;
∏

u,v∈Chem(UA)

cov(mA(u,v))∏
i=1

Cuv
aibi ;

∏
u∈Crg−(UA)

−τ
Crg

A (u)∏
i=1

Eu
aibi ;

∏
u∈Chem(UA)

vτAt
A (u)−max(τ Crg

A (u),0)∏
i=1

Euai ;

∏
u∈Chem(UB)

vτAt
B (u)−max(τ Crg

B (u),0)∏
i=1

Ēuai ;
∏

u∈Crg−(UB)

−τ
Crg

B (u)∏
i=1

Ēu
aibi ;

∏
u,v∈Chem(UB)

cov(mB(u,v))∏
i=1

C̄uv
aibi ;

∏
u∈Crg+(UB)

v∈Crg−(UB)

(
Īuv

)ion(mB(u,v))
;

∏
a∈α(UA)\D

Ra 7→ba ;
∏

b∈α(UB)

Rab 7→b;
∏

u∈UB

Su,

where the vertex names introduced by the C- and E<0-terms are chosen so that
they do not appear anywhere in A or B, and their set is denoted by I. The
vertex names removed by the C̄- and Ē<-terms are chosen from UA∪I such that
the connection is well-typed: their set is denoted by D. Similarly, the α-vertices
appearing in the E≥0- and Ē≥0-terms are chosen from UA ∪ I such that the
terms are well-typed. The vertex names introduced by the Ra 7→ba -terms, where
a ∈ α(UA) \D, are chosen so that they do not appear in A, B or I: their set is
denoted by R. Finally, the vertex names removed by the Rab 7→b-terms, where
b ∈ α(UB) are chosen from I ∪R in such a way that the terms are well-typed.

Note that while the term we obtain is in an ICE-form, it will not, in general,
be in normal form.

Example 7.5. Consider the reaction from Figure 2 (formation of benzyl ben-
zoate from benzoyl chloride and benzyl alcohol), which we redraw with vertex
names below. Here both b and i are identity maps, and Ph stands for the phenyl
group:

vOxPh

wH

sPh

rO

zCl

uC

UA

vOxPh

wH

sPh

rO
zCl

uC

UB

.

Following the procedure of Theorem 7.4, the reaction decomposes into the fol-
lowing sequence of (dis)connection rules:

Czu
ab ;Cvw

cd ;Cru
ij ;Cru

nm;Evc;Ewd;Eza;Eub;Eri;Euj ;Ern;Eum;

Ēvc; Ēwd; Ēza; Ēub; Ēri; Ēuj ; Ērn; Ēum; C̄ru
ij ; C̄ru

nm; C̄wz
da ; C̄uv

bc ;

Sz;Su;Sv;Sw;Sr.

The normal form of the above sequence is given by:

Czu
ab ;Cvw

cd ; C̄wz
da ; C̄uv

bc ;Sr.

39

8. Layered Props

Layered props were introduced in [15] as categorical models for diagrammatic
reasoning about systems with several levels of description. They have been em-
ployed to account for partial explanations and semantic analysis in the context
of electrical circuit theory, chemistry, and concurrency. Formally, a layered prop
is essentially a functor Ω : P → StrMon from a poset P to the category of strict
monoidal categories, together with a right adjoint for each monoidal functor in
the image of Ω. Given ω ∈ P , we denote a morphism σ : a→ b in Ω(ω) by the
box as follows:

σaω b ω .

We think of σ as a process with an input a and an output b happening in
the context ω. Note, however, that these diagrams are not merely a convenient
piece of notation that capture our intuition: they are a completely formal syntax
of string diagrams, describing morphisms in a certain subcategory of pointed
profunctors [15].

The monoidal categories in the image of Ω are thought of as languages
describing the same system at different levels of granularity, and the functors
are seen as translations between the languages. Given ω ≤ τ in P , let us write
f := Ω(ω ≤ τ). Then, for each a ∈ Ω(ω) we have the following morphisms:

ω τ

◀f

a fa , ωτ

▷f

afa .

The reason for having morphisms in both directions is that we want to be able to
“undo” the action of a translation while preserving a linear reasoning flow. The
two morphisms will not, in general, be inverse to each other: rather, they form an
adjoint pair. This corresponds to the intuition that some information is gained
by performing the translation, and that the translation in the reverse direction
is our best guess, or an approximation, not a one-to-one correspondence.

There are two ways to compose morphisms in parallel in a layered prop:
internally within a monoidal category Ω(ω) using its own monoidal product
(composition inside a context), and externally using the Cartesian monoidal
structure of StrMon (doing several processes in different contexts in parallel).
We represent the latter by stacking the boxes on top of each other. Additional
morphisms of a layered prop ensure that the internal and the external monoidal
structures interact in a coherent way. Finally, a layered prop comes with “de-
duction rules” (2-cells) which allow transforming one process into another one.
We refer the reader to [15] for the details.

In this work, the processes in context will be the retrosynthetic disconnection
rules (Section 6) and the chemical reactions (Section 5). The context describes
the reaction environment as well as the level of granularity at which the synthesis
is happening (i.e. what kinds of disconnection rules are available). The objects
in the monoidal categories are given by molecular entities and their parts: this
is the subject of the next section.

40

9. Retrosynthesis in Layered Props

This penultimate section puts to use all three perspectives on chemical pro-
cesses developed so far – reaction schemes, reactions, and disconnection rules.
We combine these with layered props (Section 8) to propose a mathematical
framework for retrosynthesis (Section 2). The layers of the layered prop we pro-
pose as the habitat for retrosynthesis all share the same set of objects – namely,
the chemical graphs. The morphisms of a layer are either matchings, discon-
nection rules or reactions, parameterised by environmental molecules (these can
act as solvents, reagents or catalysts).

Given a finite set M of molecular entities, let us enumerate the molecular
entities in M as M1, . . . ,Mk. Given a list natural numbers n = (n1, . . . , nk),
we denote by n1M1 + · · · + nkMk the molecular graph obtained by taking the
disjoint union of ni copies of Mi for all i = 1, . . . , k. We define three classes of
symmetric monoidal categories parameterised by finite sets of molecular entities
as follows.

Definition 9.1. Let M be a finite set of molecular entities. We define the
categories M -Match, M -React and M -Disc as having the chemical graphs as
objects. The morphisms are defined as follows:

• in M -Match, a morphism A
m,r−−→ B is given by a matching m : A → B

together with an injection r : r1M1 + · · ·+rkMk → B preserving the atom
labels such that im(m) ∪ im(r) = B, and im(m) ∩ im(b) = m(α(A)). The

composition of A
m,r−−→ B

n,s−−→ C is given by

m;n : A→ C and r;n + s : (r1 + s1)M1 + · · ·+ (rk + sk)Mk → C.

• in M -React, a morphism A→ B is a reaction n1M1+· · ·+nkMk+A
r−→ B

(i.e. a morphism in React). Given another reaction m1M1+· · ·+mkMk+

B
s−→ C, the composite A→ C is given by

(r + idm1M1+···+mkMk
); s : (n1 + m1)M1 + · · ·+ (nk + mk)Mk + A→ C.

• in M -Disc, a morphism A → B is given by a morphism n1M1 + · · · +
nkMk +A

d−→ B in Disc. Given another morphism m1M1 + · · ·+mkMk +

B
h−→ C the composite A→ C is given by

d;h : (n1 + m1)M1 + · · ·+ (nk + mk)Mk + A→ C.

If M = ∅, we may omit the prefix.

The idea is that the set M models the reaction environment: the parametric
definitions above capture the intuition that there is an unbounded supply of
these molecules in the environment. The categories M -React and M -Disc
are the parameterised [41] versions of React and Disc: a morphism A → B
implicitly has a finite number of copies of molecules from M in its domain.
A morphism A → B in M -Match may be seen as a reaction which preserves
the structure of A as it is, while potentially breaking up and rearranging the
molecular entities in M . We proceed to give an example of this.

41

Example 9.2. A morphism in M -Match is a matching such that the environ-
ment contains enough “building material” to cover the complement of the image
of the matching. We give an example below, taking M = {HCl}, where the hor-
izontal map is the matching, and the vertical map is the injection (cf. Figure 2):

vOxPh

wα

sPh

rO

zα

uC

vOxPh

wH

sPh

rO

zCl

uC

wH zCl

.

We formalise the fact that morphisms in M -Match look like special cases
of reactions by noticing that for every M there is an identity-on-objects functor

M -I : M -Match→M -React

defined by (m, r) 7→ m|Chem(A) + r, where A is the domain of (m, r). Thus we
have the following situation, for every finite set of molecular entities M :

M -Match M -DiscM -React
M -I M -R

, (41)

where M -R is defined by the action of the functor R constructed in Section 7.
Additionally, for every pair of finite sets of molecular entities such that M ⊆ N ,
there is an inclusion functor for each of the three classes of categories.

Definition 9.3 (Retrosynthetic step). A retrosynthetic step consists of

• molecular graphs T and B, called the target, and the byproduct,

• a finite set of molecular entities M , called the environment,

• a chemical graph S, whose connected components are called the synthons,

• a molecular graph E, whose connected components are called the synthetic
equivalents,

• morphisms d ∈ Disc(T, S), m ∈M -Match(S,E),
and r ∈M -React(E, T + B).

Proposition 9.4. The data of a retrosynthetic step are equivalent to existence
of the following morphism (1-cell) in the layered prop generated by the dia-
gram (41):

42

Disc ◀ M -Match ◀M-I M -React

d m r
T S E

T

◀M-RM -Disc

B

▷M-I

M -React

.

The morphism in the above proposition should be compared to the informal
diagram in Figure 2. The immediate advantage of presenting a retrosynthetic
step as a morphism in a layered prop is that it illustrates how the different
parts of the definition fit together in a highly procedural manner. Equally
importantly, this presentation is fully compositional: note that the three mor-
phisms constituting a retrosynthetic step can be divided between several parties
(e.g. different labs or computers), so long as their boundaries match in the spec-
ified way. Moreover, one can reason about different components of the step
while preserving a precise mathematical interpretation, so long as one sticks
to the rewrites (2-cells) of the layered prop: we illustrate this in the following
proposition.

Proposition 9.5. There is a rewrite (2-cell) from the 1-cell of Proposition 9.4
to the following 1-cell:

Disc ◀ M -React

d M -I(m) r
T S E

T

◀M-RM -Disc

B

.

Definition 9.6 (Retrosynthetic sequence). A retrosynthetic sequence for a tar-
get molecular entity T is a sequence of morphisms r1 ∈M1-React(E1, T +B0),
r2 ∈M2-React(E2, E1 +B1), . . . , rn ∈M1-React(En, En−1 +Bn−1) such that
the codomain of ri+1 is the disjoint union of the domain of ri with some other
molecular graph:

Mn-React

rn
En

En−1

· · ·

M1-React

r1
E1

M2-React

r2
E2

E1 T

B0B1Bn−1

.

Thus a retrosynthetic sequence is a chain of reactions, together with reac-
tion environments, such that the products of one reaction can be used as the
reactants for the next one, so that the reactions can occur one after another (as-
suming that the products can be extracted from the reaction environment, or
one environment transformed into another one). In the formulation of a generic
retrosynthesis procedure below, we shall additionally require that each reaction
in the sequence comes from “erasing” everything but the rightmost cell in a
retrosynthetic step.

We are now ready to formulate step-by-step retrosynthetic analysis. The
procedure is a high-level mathematical description that, we suggest, is flexible
enough to capture all instances of retrosynthetic algorithms. As a consequence,
it can have various computational implementations. Let T be some fixed molec-
ular entity. We initialise by setting i = 0 and E0 := T .

43

1. Choose a subset D of sequences of disconnection rules,

2. Provide at least one of the following:

(a) a finite set of reaction schemes S,

(b) a function F from molecular graphs to finite sets of molecular graphs,

3. Search for a retrosynthetic step with morphisms d ∈ Disc(Ei, S), m ∈
M -Match(S,E), and r ∈M -React(E,Ei +Bi) such that d ∈ D, and we
have at least one of the following:

(a) there is an s ∈ S such that the reaction r is an instance of s,

(b) Ei + Bi ∈ F(E);

if successful, set Ei+1 := E, Mi+1 := M , ri+1 := r and proceed to Step 4;
if unsuccessful, stop,

4. Check if the molecular entities in Ei+1 are known (commercially available):
if yes, terminate; if no, increment i 7→ i + 1 and return to Step 1.

Note how our framework is able to incorporate both template-based and template-
free retrosynthesis, corresponding to the choices between (a) and (b) in Step 2:
the set S is the template, while the function F can be a previously trained algo-
rithm, or other unstructured empirical model of reactions. We can also consider
hybrid models by providing both S and F, hence allowing for combinations of
existing algorithms.

We take the output retrosynthetic sequence to always come with a specified
reaction environment for each reaction. Currently existing tools rarely provide
this information (mostly for complexity reasons), and hence, in our framework,
correspond to the set M always being empty in Step 3.

The retrosynthetic steps outputted by the above procedure are highly tun-
able: the choice of the set D determines what kinds of bonds are disconnected
(one could, for example, put an upper bound to the number of disconnected co-
valent bonds), while the set S can be used to enforce the presence of a functional
group. Introducing negative application conditions for double pushout rewrit-
ing [42, 43] would further allow enforcing an absence of a functional group3. A
rudimentary form of specificity is obtained by minimising the size of the byprod-
uct molecular graph Bi. Further adjustments increasing the yield include choos-
ing the environment Mi (which, inter alia, can function as a catalyst) as well as
introducing protection-deprotection steps.

Steps 1 and 2 both require making some choices. Two approaches to reduce
the number of choices, as well as the search space in Step 3, have been proposed
in the automated retrosynthesis literature: to use molecular similarity [7], or
machine learning [9]. Chemical similarity can be used to determine which dis-
connection rules, reactions and environment molecules are actually tried: e.g. in
Step 1, disconnection rules that appear in syntheses of molecules similar to T
can be prioritised.

3We thank an anonymous reviewer of Theoretical Computer Science for bringing up this
point.

44

Ideally, each unsuccessful attempt to construct a retrosynthetic step in Step 3
should return some information on why the step failed: e.g. if the codomain of
a reaction fails to contain Ei, then the output should be the codomain and a
measure of how far it is from Ei. Similarly, if several reactions are found in
Step 3, some of which result in products O that do not contain Ei, the step
should suggest minimal alterations to E such that these reactions do not occur.
This can be seen as a deprotection step: the idea is that in the next iteration the
algorithm will attempt to construct (by now a fairly complicated) E, but now
there is a guarantee this is worth the computational effort, as this prevents the
unwanted reactions from occurring (protection step). Passing such information
between the layers would take the full advantage of the layered prop formalism.

10. Discussion and Future Work

This article has discussed in detail three mathematical perspectives on chem-
ical processes: reaction schemes, category of reactions and disconnection rules.
Reaction schemes are a compact way to store chemical reaction data, and gen-
erate all the formal chemical reactions via double pushout rewriting. The cate-
gory of reactions captures combinatorially all the theoretically possible chemical
transformations of graphs, as well as providing a uniform notion of composition
for reactions. Disconnection rules provide the fine grained, low level syntax of
all chemically feasible local graph transformations. The completeness and uni-
versality results of Section 7 show that the disconnection rules and reactions are
tightly linked, further motivating the use of disconnection rules, hitherto only
appearing informally in the (computational) retrosynthesis literature, for both
storing reaction data and as part of retrosynthetic analysis.

Universality can be thought of as a consistency result for reactions: their
definition captures exactly those rearrangements of chemical graphs which result
from local, chemically motivated rewrite rules. Completeness says that there is
no redundancy in the representation: treating the (dis)connection rules as terms,
the terms can be endowed with equations such that the terms describing the
same reaction are identified. As the decomposition of a reaction into a sequence
of (dis)connection rules is algorithmic, these results can be used to automatically
break a reaction (or its part) into smaller components: the purpose can be, inter
alia, retrosynthetic analysis or storing reaction data in a systematic way.

The main conceptual contributions of formulating retrosynthesis in layered
props are the explicit mathematical descriptions of retrosynthetic steps (Defini-
tion 9.3) and sequences (Definition 9.6), which allows for a precise formulation
of the entire process, as well as of more fine-grained concepts.

10.1. Future Work

Chemical Questions. While stereochemistry is relatively straightforward to ac-
count for on the level of chemical graphs and reactions (Subsection 3.1), it is
unclear how to do this for the disconnection rules, as they only operate at one
or two vertices at a time. A more straightforward extension of disconnection
category would introduce energy and dynamics into the disconnection rules by
quantifying how much energy each (dis)connection (in a particular context) re-
quires to occur.

45

While in the current article we showed how to account for the available
disconnection rules, reactions and environmental molecules as part of the ret-
rosynthetic reaction search, the general formalism of layered props immediately
suggests how to account for other environmental factors (e.g. temperature and
pressure). Namely, these should be represented as posets which control the
morphisms that are available between the chemical compounds. One idea for
accounting for the available energy is via the disconnection rules: the higher
the number of bonds that we are able to break in one step, the more energy is
required to be present in the environment.

Computational Questions. Given the algorithmic nature of both completeness
and universality proofs, the next step is to implement both. The first algorithm
would take an arbitrary reaction as an input, and output a sequence of discon-
nection rules representing it. The second algorithm would decide whether two
terms are equal or not, implementing the normalisation procedure. Another
direction for connecting this work with more standard approaches to computa-
tional chemistry would be translating our formalism to a widely used notation
such as SMILES [44, 45].

On the side of retrosynthetic design, the crucial next step is to take existing
retrosynthesis algorithms and encode them in our framework. This requires im-
plementing the morphisms of the layered prop in the previous section in some
software. As the morphisms in a layered prop are represented by string dia-
grams, one approach is to use proof formalisation software specific to string
diagrams and their equational reasoning, such as [46]. Alternatively, these mor-
phisms could be encoded in a programming language like python or Julia. The
latter is especially promising, as there are modules formalising category theory
available for it [47, 48]. As a lower level description, the disconnection rules and
the reactions presented could be encoded in some graph rewriting language,
such as Kappa [49, 50, 51, 52], which is used to model systems of interacting
agents, or MØD [53, 54, 55, 52], which represents molecules as labelled graphs
and generating rules for chemical transformations as spans of graphs (akin to
this work).

Mathematical Questions. An important mathematical development is to intro-
duce monoidal terms into the disconnection category, so as to allow parallel
reactions, making the discussion in Section 9 mathematically rigorous, as well
as allowing for the usage of graphical calculi for monoidal categories [14]. An-
other mathematical question is whether the categories Disc and React have
any interesting categorical structure, such as being restriction categories [56].

At the level of the layered prop formalism, the next step is to model trans-
lations between the reaction environments as functors of the form M -React→
N -React. This would allow presenting a retrosynthetic sequence as a single,
connected diagram, closely corresponding to actions to be taken in a lab. Sim-
ilarly, we note that the informal algorithmic description in Section 9 could be
presented internally in a layered prop: Steps 1 and 2 amount to choosing sub-
categories of Disc and React.

Acknowledgements

We thank the anonymous reviewers of Theoretical Computer Science, as
well as of the conference papers (ICTAC 2023 and ICTAC 2024) for suggestions

46

vastly improving the presentation of the article. FZ acknowledges support from
epsrc grant EP/V002376/1, miur PRIN P2022HXNSC, and aria Safeguarded
AI TA1.1 grant n.8777242.

References

[1] S. Warren, P. Wyatt, Organic synthesis: the disconnection approach, 2nd
Edition, Wiley, Hoboken, N.J, 2008.

[2] F. Strieth-Kalthoff, F. Sandfort, M. H. S. Segler, F. Glorius, Machine
learning the ropes: principles, applications and directions in synthetic
chemistry, Chemical Society Reviews 49 (17) (2020) 6154–6168. doi:

10.1039/C9CS00786E.

[3] Y. Sun, N. V. Sahinidis, Computer-aided retrosynthetic design: funda-
mentals, tools, and outlook, Current Opinion in Chemical Engineering 35
(2022) 100721. doi:10.1016/j.coche.2021.100721.

[4] E. J. Corey, Robert Robinson lecture. Retrosynthetic thinking – essentials
and examples, Chemical society reviews 17 (1988) 111–133. doi:10.1039/
CS9881700111.

[5] S. Warren, Designing organic syntheses: a programmed introduction to the
synthon approach, John Wiley & Sons, 1991.

[6] J. Law, Z. Zsoldos, A. Simon, D. Reid, Y. Liu, S. Y. Khew, A. P. John-
son, S. Major, R. A. Wade, H. Y. Ando, Route designer: A retrosyn-
thetic analysis tool utilizing automated retrosynthetic rule generation,
Journal of Chemical Information and Modeling 49 (3) (2009) 593–602.
doi:10.1021/ci800228y.

[7] C. W. Coley, L. Rogers, W. H. Green, K. F. Jensen, Computer-assisted
retrosynthesis based on molecular similarity, ACS central science 3 (12)
(2017) 1237–1245. doi:10.1021/acscentsci.7b00355.

[8] C. W. Coley, W. H. Green, K. F. Jensen, Machine learning in computer-
aided synthesis planning, Accounts of chemical research 51 (5) (2018) 1281–
1289. doi:10.1021/acs.accounts.8b00087.

[9] K. Lin, Y. Xu, J. Pei, L. Lai, Automatic retrosynthetic route planning
using template-free models, Chemical science (Cambridge) 11 (12) (2020)
3355–3364. doi:10.1039/c9sc03666k.

[10] S. Chen, Y. Jung, Deep retrosynthetic reaction prediction using local reac-
tivity and global attention, JACS Au 1 (10) (2021) 1612–1620.

[11] U. V. Ucak, I. Ashyrmamatov, J. Ko, J. Lee, Retrosynthetic reaction
pathway prediction through neural machine translation of atomic environ-
ments, Nature communications 13 (1) (2022) 1186–1186. doi:10.1038/

s41467-022-28857-w.

[12] J. Dong, M. Zhao, Y. Liu, Y. Su, X. Zeng, Deep learning in retrosynthesis
planning: datasets, models and tools, Briefings in Bioinformatics 23 (1)
(2022) bbab391. doi:10.1093/bib/bbab391.

47

https://doi.org/10.1039/C9CS00786E
https://doi.org/10.1039/C9CS00786E
https://doi.org/10.1016/j.coche.2021.100721
https://doi.org/10.1039/CS9881700111
https://doi.org/10.1039/CS9881700111
https://doi.org/10.1021/ci800228y
https://doi.org/10.1021/acscentsci.7b00355
https://doi.org/10.1021/acs.accounts.8b00087
https://doi.org/10.1039/c9sc03666k
https://doi.org/10.1038/s41467-022-28857-w
https://doi.org/10.1038/s41467-022-28857-w
https://doi.org/10.1093/bib/bbab391

[13] M. Filice, J. M. Guisan, J. M. Palomo, Recent trends in regioselective pro-
tection and deprotection of monosaccharides, Current Organic Chemistry
14 (6) (2010) 516–532. doi:10.2174/138527210790820276.

[14] R. Piedeleu, F. Zanasi, An Introduction to String Diagrams for Com-
puter Scientists, Cambridge University Press, 2024, to appear, available
at https://arxiv.org/abs/2305.08768.

[15] L. Lobski, F. Zanasi, String diagrams for layered explanations, Electronic
Proceedings in Theoretical Computer Science 380 (2023) 362–382. doi:

10.4204/eptcs.380.21.

[16] O. Bournez, L. Ibănescu, H. Kirchner, From chemical rules to term rewrit-
ing, Electronic Notes in Theoretical Computer Science 147 (1) (2006) 113–
134, proceedings of the 6th International Workshop on Rule-Based Pro-
gramming (RULE 2005). doi:10.1016/j.entcs.2005.06.040.

[17] E. Gale, L. Lobski, F. Zanasi, A categorical approach to synthetic chem-
istry, in: E. Ábrahám, C. Dubslaff, S. L. T. Tarifa (Eds.), Theoretical As-
pects of Computing – ICTAC 2023, Springer Nature Switzerland, Cham,
2023, pp. 276–294. doi:10.1007/978-3-031-47963-2_17.

[18] E. Gale, L. Lobski, F. Zanasi, Disconnection rules are complete for chemical
reactions (2024). arXiv:2410.01421.

[19] B. Fong, D. I. Spivak, An Invitation to Applied Category Theory: Seven
Sketches in Compositionality, Cambridge University Press, Cambridge,
2019. doi:10.1017/9781108668804.

[20] E. J. Corey, X. Cheng, The logic of chemical synthesis, John Wiley, New
York, 1989.

[21] J. Clayden, N. Greeves, S. Warren, Organic chemistry, 2nd Edition, Oxford
University Press, Oxford, 2012.

[22] M. E. Fortunato, C. W. Coley, B. C. Barnes, K. F. Jensen, Data aug-
mentation and pretraining for template-based retrosynthetic prediction in
computer-aided synthesis planning, Journal of chemical information and
modeling 60 (7) (2020) 3398–3407. doi:10.1021/acs.jcim.0c00403.

[23] C. Yan, P. Zhao, C. Lu, Y. Yu, J. Huang, RetroComposer: Composing
templates for template-based retrosynthesis prediction, Biomolecules 12 (9)
(2022) 1325. doi:10.3390/biom12091325.

[24] V. R. Somnath, C. Bunne, C. W. Coley, A. Krause, R. Barzilay, Learning
graph models for retrosynthesis prediction (2021). arXiv:2006.07038.

[25] A. Matwijczuk, D. Karcz, R. Walkowiak, J. Furso, B. G ladyszewska,
S. Wybraniec, A. Niewiadomy, G. P. Karwasz, M. Gagoś, Effect of solvent
polarizability on the keto/enol equilibrium of selected bioactive molecules
from the 1, 3, 4-thiadiazole group with a 2, 4-hydroxyphenyl function,
The Journal of Physical Chemistry A 121 (7) (2017) 1402–1411. doi:

10.1021/acs.jpca.6b08707.

48

https://doi.org/10.2174/138527210790820276
https://arxiv.org/abs/2305.08768
https://doi.org/10.4204/eptcs.380.21
https://doi.org/10.4204/eptcs.380.21
https://doi.org/10.1016/j.entcs.2005.06.040
https://doi.org/10.1007/978-3-031-47963-2_17
http://arxiv.org/abs/2410.01421
https://doi.org/10.1017/9781108668804
https://doi.org/10.1021/acs.jcim.0c00403
https://doi.org/10.3390/biom12091325
http://arxiv.org/abs/2006.07038
https://doi.org/10.1021/acs.jpca.6b08707
https://doi.org/10.1021/acs.jpca.6b08707

[26] A. G. Cook, P. M. Feltman, Determination of solvent effects on keto–enol
equilibria of 1, 3-dicarbonyl compounds using NMR, Journal of chemical
education 84 (11) (2007) 1827. doi:10.1021/ed084p1827.

[27] G. Marcou, J. Aires de Sousa, D. A. R. S. Latino, A. de Luca, D. Horvath,
V. Rietsch, A. Varnek, Expert system for predicting reaction conditions:
The Michael reaction case, Journal of Chemical Information and Modeling
55 (2) (2015) 239–250. doi:10.1021/ci500698a.

[28] H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green, K. F. Jensen,
Using machine learning to predict suitable conditions for organic reactions,
ACS central science 4 (11) (2018) 1465–1476. doi:10.1021/acscentsci.

8b00357.

[29] E. Walker, J. Kammeraad, J. Goetz, M. T. Robo, A. Tewari, P. M. Zim-
merman, Learning to predict reaction conditions: Relationships between
solvent, molecular structure, and catalyst, Journal of Chemical Information
and Modeling 59 (9) (2019) 3645–3654. doi:10.1021/acs.jcim.9b00313.

[30] M. R. Maser, A. Y. Cui, S. Ryou, T. J. DeLano, Y. Yue, Multilabel clas-
sification models for the prediction of cross-coupling reaction conditions,
Journal of Chemical Information and Modeling 61 (1) (2021) 156–166.
doi:10.1021/acs.jcim.0c01234.

[31] C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green, K. F. Jensen, Pre-
diction of organic reaction outcomes using machine learning, ACS central
science 3 (5) (2017) 434–443. doi:10.1021/acscentsci.7b00064.

[32] S. Lack, P. Sobociński, Adhesive categories, in: I. Walukiewicz (Ed.),
Foundations of Software Science and Computation Structures, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 273–288. doi:10.1007/

978-3-540-24727-2_20.

[33] S. Lack, P. Sobociński, Adhesive and quasiadhesive categories, RAIRO
- Theoretical Informatics and Applications 39 (3) (2005) 511–545. doi:

10.1051/ita:2005028.

[34] H. Ehrig, U. Golas, F. Hermann, Categorical frameworks for graph trans-
formation and HLR systems based on the DPO approach, Bull. EATCS
102 (2010) 111–121.

[35] A. Habel, D. Plump,M,N -adhesive transformation systems, in: H. Ehrig,
G. Engels, H.-J. Kreowski, G. Rozenberg (Eds.), Graph Transformations,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 218–233. doi:

10.1007/978-3-642-33654-6_15.

[36] D. Castelnovo, F. Gadducci, M. Miculan, A new criterion for M,N -
adhesivity, with an application to hierarchical graphs, in: P. Bouyer,
L. Schröder (Eds.), Foundations of Software Science and Computation
Structures, Springer International Publishing, Cham, 2022, pp. 205–224.
doi:10.1007/978-3-030-99253-8_11.

[37] D. Castelnovo, M. Miculan, On the axioms of M,N -adhesive categories
(2024). arXiv:2401.12638.

49

https://doi.org/10.1021/ed084p1827
https://doi.org/10.1021/ci500698a
https://doi.org/10.1021/acscentsci.8b00357
https://doi.org/10.1021/acscentsci.8b00357
https://doi.org/10.1021/acs.jcim.9b00313
https://doi.org/10.1021/acs.jcim.0c01234
https://doi.org/10.1021/acscentsci.7b00064
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-642-33654-6_15
https://doi.org/10.1007/978-3-642-33654-6_15
https://doi.org/10.1007/978-3-030-99253-8_11
http://arxiv.org/abs/2401.12638

[38] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Inferring chemical
reaction patterns using rule composition in graph grammars, Journal of
Systems Chemistry 4 (1) (2013) 1–4. doi:10.1186/1759-2208-4-4.

[39] P. Selinger, Dagger compact closed categories and completely positive
maps: (extended abstract), Electronic Notes in Theoretical Computer Sci-
ence 170 (2007) 139–163, proceedings of the 3rd International Workshop on
Quantum Programming Languages (QPL 2005). doi:10.1016/j.entcs.

2006.12.018.

[40] C. Heunen, J. Vicary, Categories for Quantum Theory: An Introduction,
Oxford University Press, 2019. doi:10.1093/oso/9780198739623.001.

0001.

[41] B. Fong, D. I. Spivak, R. Tuyéras, Backprop as functor: A compositional
perspective on supervised learning (2019). doi:10.48550/arXiv.1711.

10455.

[42] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann, Constraints and ap-
plication conditions: From graphs to high-level structures, in: H. Ehrig,
G. Engels, F. Parisi-Presicce, G. Rozenberg (Eds.), Graph Transforma-
tions, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 287–303.
doi:10.1007/978-3-540-30203-2_21.

[43] R. Machado, L. Ribeiro, R. Heckel, Rule-based transformation of graph
rewriting rules: Towards higher-order graph grammars, Theoretical Com-
puter Science 594 (2015) 1–23. doi:10.1016/j.tcs.2015.01.034.

[44] D. Weininger, SMILES, a chemical language and information system. 1.
introduction to methodology and encoding rules, Journal of Chemical In-
formation and Computer Sciences 28 (1) (1988) 31–36. doi:10.1021/

ci00057a005.

[45] SMILES tutorial, Website: https://daylight.com/dayhtml_tutorials/
languages/smiles/index.html. Accessed 13.07.2024. (1997-2022).

[46] P. Sobocinski, P. Wilson, F. Zanasi, Cartographer: a tool for string dia-
grammatic reasoning, in: M. Roggenbach, A. Sokolova (Eds.), 8th Confer-
ence on Algebra and Coalgebra in Computer Science (CALCO), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, pp. 20:1–20:7.
URL https://cartographer.id/cartographer-calco-2019.pdf

[47] M. Halter, E. Patterson, A. Baas, J. Fairbanks, Compositional scientific
computing with catlab and SemanticModels (2020). arXiv:2005.04831.

[48] AlgebraicJulia, Website: https://www.algebraicjulia.org/. Accessed
13.07.2024. (2023).

[49] Kappa language, Website: https://kappalanguage.org/. Accessed
13.07.2024. (2024).

[50] V. Danos, C. Laneve, Formal molecular biology, Theoretical computer sci-
ence 325 (1) (2004) 69–110. doi:10.1016/j.tcs.2004.03.065.

50

https://doi.org/10.1186/1759-2208-4-4
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.48550/arXiv.1711.10455
https://doi.org/10.48550/arXiv.1711.10455
https://doi.org/10.1007/978-3-540-30203-2_21
https://doi.org/10.1016/j.tcs.2015.01.034
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://daylight.com/dayhtml_tutorials/languages/smiles/index.html
https://daylight.com/dayhtml_tutorials/languages/smiles/index.html
https://cartographer.id/cartographer-calco-2019.pdf
https://cartographer.id/cartographer-calco-2019.pdf
https://cartographer.id/cartographer-calco-2019.pdf
http://arxiv.org/abs/2005.04831
https://www.algebraicjulia.org/
https://kappalanguage.org/
https://doi.org/10.1016/j.tcs.2004.03.065

[51] J. Krivine, Systems biology, ACM SIGLOG News 4 (3) (2017) 43–61. doi:
10.1145/3129173.3129182.

[52] N. Behr, J. Krivine, J. L. Andersen, D. Merkle, Rewriting theory for the
life sciences: A unifying theory of CTMC semantics, Theor. Comput. Sci.
884 (2021) 68–115. doi:10.1016/j.tcs.2021.07.026.

[53] MØD, Website: https://cheminf.imada.sdu.dk/mod/. Accessed
13.07.2024. (2024).

[54] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, An intermediate level
of abstraction for computational systems chemistry, Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 375 (2109) (2017) 20160354. doi:10.1098/rsta.2016.0354.

[55] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Chemical transfor-
mation motifs – modelling pathways as integer hyperflows, IEEE/ACM
transactions on computational biology and bioinformatics 16 (2) (2019)
510–523. doi:10.1109/TCBB.2017.2781724.

[56] J. Cockett, S. Lack, Restriction categories i: categories of partial maps,
Theoretical Computer Science 270 (1) (2002) 223–259. doi:10.1016/

S0304-3975(00)00382-0.

51

https://doi.org/10.1145/3129173.3129182
https://doi.org/10.1145/3129173.3129182
https://doi.org/10.1016/j.tcs.2021.07.026
https://cheminf.imada.sdu.dk/mod/
https://doi.org/10.1098/rsta.2016.0354
https://doi.org/10.1109/TCBB.2017.2781724
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0

Appendix A. ICE-form

Here we give the detailed inductive proof of the fact that any term has an
equivalent term in an ICE-form (Proposition 6.8).

Lemma Appendix A.1. Let t be a term such that the term t; Iuv is defined.
Then there exists a term t′ such that t and t′ have the same number of I-terms,
and one of the following holds:

(1) t; Iuv ≡ t′, or

(2) there is a disconnection Iab such that t; Iuv ≡ Iab; t′.

Proof. We proceed by induction on the structure of t.

Base cases.

id; Iuv ≡ Iuv; id,

Sw; Iuv ≡ Iuv;Sw, (by (20))

Rw 7→z; Iuv ≡ Iuv;Rw 7→z, (by (7))

Iwz; Iuv is already in the right form

Cwz
ab ; Iuv ≡ Iuv;Cwz

ab , (by (24))

Ew
ab; I

uv ≡ Iuv;Ew
ab, (by (25))

Ewz; Iuv ≡ Iuv;Ewz, (by (26))

Īwz; Iuv ≡

{
Su;Sv if w = u, z = v

Iuv; Īwz otherwise,
(by (15) and (17))

C̄wz
ab ; Iuv ≡ Iuv; C̄wz

ab , (by (29))

Ēw
ab; I

uv ≡ Iuv; Ēw
ab, (by (28))

Ēwz; Iuv ≡ Iuv; Ēwz. (by (27))

Inductive case. Let t : A→ B and s : B → C be terms such that the statement
of the lemma holds. Suppose that the term t; s; Iuv is defined. Then also the
term s; Iuv is defined, so by the inductive hypothesis for s, there is a term s′

with the same number of I-terms as s such that either (1) s; Iuv ≡ s′, or (2)
s; Iuv ≡ Iab; s′ for some I-term Iab. In the first case, we have

t; s; Iuv ≡ t; s′,

and since t; s′ has the same number of I-terms as t; s, it is the sought-after
term for the inductive case satisfying (1). In the second case, we have

t; s; Iuv ≡ t; Iab; s′,

so that t; Iab is defined. By the inductive hypothesis for t, there is a term t′

with the same number of I-terms as t such that either (1) t; Iab ≡ t′, or (2)
t; Iab ≡ Iwz; t′ for some I-term Iwz. In the first case, we get

t; s; Iuv ≡ t′; s′,

satisfying (1) for the inductive case, as t′; s′ and t; s have the same number of
I-terms. In the second case, we obtain

t; s; Iuv ≡ Iwz; t′; s′,

satisfying (2) for the inductive case.

52

Corollary Appendix A.2. Any term is equal to a term of the form I; t, where
I is a sequence of I-terms, and the term t contains no I-terms.

Lemma Appendix A.3. Let t be a term not containing any I-terms such
that the term t;Cuv

ab is defined. Then there exists a term t′ not containing any
I-terms such that t and t′ have the same number of C-terms, and one of the
following holds:

(1) t;Cuv
ab ≡ t′, or

(2) there is a disconnection Cwz
cd such that t;Cuv

ab ≡ Cwz
cd ; t′.

Proof. By induction on t.

Base cases.

id;Cuv
ab ≡ Cuv

ab ; id,

Sw;Cuv
ab ≡ Cuv

ab ;Sw, (by (20))

Rw 7→z;Cuv
ab ≡


Cuv

ab ;Rw 7→z if w ̸= {a, b},
Cuv

kb ;Ra7→z;Rk 7→a if w = a,

Cuv
ak ;Rb7→z;Rk 7→b if w = b,

(by (7) and (9))

Cwz
cd ;Cuv

ab is already in the right form,

Ew
cd;Cuv

ab ≡ Cuv
ab ;Ew

cd, (by (30))

Ewz;Cuv
ab ≡ Cuv

ab ;Ewz, (by (31))

Īwz;Cuv
ab ≡ Cuv

ab ; Īwz, (by (29))

C̄wz
cd ;Cuv

ab ≡


Sw;Sz;Rc7→j ;Rd7→b;Rj 7→a if w = u, z = v,

Sw;Sz;Rc7→j ;Rd7→a;Rj 7→b if w = v, z = u,

Cuv
ij ; C̄wz

cd ;Ri7→a;Rj 7→b otherwise,

(by (36) and (10))

Ēw
cd;Cuv

ab ≡ Cuv
ij ; Ēw

cd;Ri 7→a;Rj 7→b, (by (10))

Ēwz;Cuv
ab ≡ Cuv

ab ; Ēwz. (by (32))

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.4. Any term is equal to a term of the form I; C; t,
where I and C are sequences of I-terms and C-terms, and the term t contains
no I-terms or C-terms.

Lemma Appendix A.5. Let t be a term not containing any I- or C-terms
such that the term t;Eu

ab is defined. Then there exists a term t′ not containing
any I- or C-terms such that t and t′ have the same number of E<0-terms, and
one of the following holds:

(1) t;Eu
ab ≡ t′, or

(2) there is a disconnection Ew
cd such that t;Eu

ab ≡ Ew
cd; t′.

Proof. By induction on t.

53

Base cases.

id;Eu
ab ≡ Eu

ab; id,

Sw;Eu
ab ≡ Eu

ab;S
w, (by (20))

Rw 7→z;Eu
ab ≡


Eu

ab;R
w 7→z if w ̸= {a, b},

Eu
kb;R

a7→z;Rk 7→a if w = a,

Eu
ak;Rb7→z;Rk 7→b if w = b,

(by (7) and (9))

Ew
cd;Eu

ab is already in the right form,

Ewz;Eu
ab ≡ Eu

ab;E
wz, (by (33))

Īwz;Eu
ab ≡ Eu

ab; Ī
wz, (by (28))

C̄wz
cd ;Eu

ab ≡ Eu
ij ; C̄

wz
cd ;Ri7→a;Rj 7→b, (by (10))

Ēw
cd;Eu

ab ≡

{
Sw;Rc 7→j ;Rd 7→b;Rj 7→a if w = u,

Eu
ij ; Ē

u
cd;Ri7→a;Rj 7→b otherwise,

(by (36) and (10))

Ēwz;Eu
ab ≡ Eu

ab; Ē
wz. (by (34))

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.6. Any term is equal to a term of the form I; C; E<0; t,
where I, C and E<0 are sequences of I-, C-, and E<0-terms, and the term t

contains no I-, C-, or E<0-terms.

Lemma Appendix A.7. Let t be a term not containing any I-, C-, or E<0-
terms such that the term t;Euv is defined. Then there exists a term t′ not
containing any I-, C-, or E<0-terms such that t and t′ have the same number
of E≥0-terms, and one of the following holds:

(1) t;Euv ≡ t′, or

(2) there is a disconnection Ewz such that t;Euv ≡ Ewz; t′.

Proof. By induction on t.

Base cases.

id;Euv ≡ Euv; id,

Sw;Euv ≡ Euv;Sw, (by (20))

Rw 7→z;Euv ≡

{
Euv;Rw 7→z if z ̸= v,

Euw;Rw 7→v if z = v,
(by (7) and (8))

Ewz;Euv is already in the right form,

Īwz;Euv ≡ Euv; Īwz, (by (27))

C̄wz
cd ;Euv ≡ Euv; C̄wz

cd , (by (32))

Ēw
cd;Euv ≡ Euv; Ēw

cd, (by (34))

Ēwz;Euv ≡

{
Su;Sv if w = u and z = v,

Euv; Ēwz otherwise.
(by (15) and (17))

The inductive case is very similar to that of Lemma Appendix A.1.

54

Corollary Appendix A.8. Any term is equal to a term of the form

I; C; E<0; E≥0; t,

where I, C, E<0 and E≥0 are sequences of I-, C-, E<0, and E≥0-terms, and the
term t contains no I-, C-, E<0, or E≥0-terms.

Lemma Appendix A.9. Let t be a term not containing any I-, C- or E-terms
such that the term t; Ēuv is defined. Then there exists a term t′ not containing
any I-, C- or E-terms such that t and t′ have the same number of Ē≥-terms,
and one of the following holds:

(1) t; Ēuv ≡ t′, or

(2) there is a connection Ēwz such that t; Ēuv ≡ Ēwz; t′.

Proof. By induction on t.

Base cases.

id; Ēuv ≡ Ēuv; id,

Sw; Ēuv ≡ Ēuv;Sw, (by (20))

Rw 7→z; Ēuv ≡

{
Ēuv;Rw 7→z if z ̸= v,

Ēuw;Rw 7→v if z = v,
(by (7) and (8))

Īwz; Ēuv ≡ Ēuv; Īwz, (by (26))

C̄wz
cd ; Ēuv ≡ Ēuv; C̄wz

cd , (by (31))

Ēw
cd; Ēuv ≡ Ēuv; Ēw

cd, (by (33))

Ēwz; Ēuv is already in the right form.

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.10. Any term is equal to a term of the form

I; C; E<0; E≥0; Ē≥0; t,

where the term t contains no I-, C-, E-, or Ē≥0-terms.

Lemma Appendix A.11. Let t be a term not containing any I-, C-, E-, or
Ē≥0-terms such that the term t; Ēu

ab is defined. Then there exists a term t′

not containing any I-, C-, E-, or Ē≥0-terms such that t and t′ have the same
number of Ē<0-terms, and one of the following holds:

(1) t; Ēu
ab ≡ t′, or

(2) there is a connection Ēw
cd such that t; Ēu

ab ≡ Ēw
cd; t′.

Proof. By induction on t.

55

Base cases.

id; Ēu
ab ≡ Ēu

ab; id,

Sw; Ēu
ab ≡ Ēu

ab;S
w, (by (20))

Rw 7→z; Ēu
ab ≡


Ēu

ab;R
w 7→z if z /∈ {a, b},

Ēu
wb if z = a,

Ēu
aw if z = b,

(by (7) and (9))

Īwz; Ēu
ab ≡ Ēu

ab; Ī
wz, (by (25))

C̄wz
cd ; Ēu

ab ≡ Ēu
ab; C̄

wz
cd , (by (30))

Ēw
cd; Ēu

ab is already in the right form.

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.12. Any term is equal to a term of the form

I; C; E<0; E≥0; Ē≥0; Ē<0; t,

where the term t contains no I-, C-, E- or Ē-terms.

Lemma Appendix A.13. Let t be a term not containing any I-, C-, E- or
Ē-terms such that the term t; C̄uv

ab is defined. Then there exists a term t′ not
containing any I-, C-, E- or Ē-terms such that t and t′ have the same number
of C̄-terms, and one of the following holds:

(1) t; C̄uv
ab ≡ t′, or

(2) there is a connection C̄wz
cd such that t; C̄uv

ab ≡ C̄wz
cd ; t′.

Proof. By induction on t.

Base cases.

id; C̄uv
ab ≡ C̄uv

ab ; id,

Sw; C̄uv
ab ≡ C̄uv

ab ;Sw, (by (20))

Rw 7→z; C̄uv
ab ≡


C̄uv

ab ;Rw 7→z if z /∈ {a, b},
C̄uv

wb if z = a,

C̄uv
aw if z = b,

(by (7) and (9))

Īwz; C̄uv
ab ≡ C̄uv

ab ; Īwz, (by (24))

C̄wz
cd ; C̄uv

ab is already in the right form.

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.14. Any term is equal to a term of the form

I; C; E<0; E≥0; Ē≥0; Ē<0; C̄; t,

where the term t contains no I-, C-, E-, Ē- or C̄-terms.

Lemma Appendix A.15. Let t be a term not containing any I-, C-, E-, Ē-
or C̄-terms such that the term t; Īuv is defined. Then there exists a term t′ not
containing any I-, C-, E-, Ē- or C̄-terms such that t and t′ have the same
number of Ī-terms, and one of the following holds:

56

(1) t; Īuv ≡ t′, or

(2) there is a connection Īab such that t; Īuv ≡ Īab; t′.

Proof. By induction on t.

Base cases.

id; Īuv ≡ Īuv; id,

Sw; Īuv ≡ Īuv;Sw, (by (20))

Rw 7→z; Īuv ≡ Īuv;Rw 7→z, (by (7))

Īwz; Īuv is already in the right form.

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.16. Any term is equal to a term of the form

I; C; E<0; E≥0; Ē≥0; Ē<0; C̄; Ī; t,

where the term t contains only S-, R-, and identity terms.

Lemma Appendix A.17. Let t be a term containing only S-, R-, and identity
terms such that the term Su; t is defined. Then there exists a term t′ containing
only S-, R-, and identity terms such that t and t′ have the same number of S-
terms, and one of the following holds:

(1) Su; t ≡ t′, or

(2) there is a term Sv such that Su; t ≡ t′;Sv.

Proof. By induction on t.

Base cases.

Su; id ≡ id;Su,

Su;Sw is already in the right form,

Su;Rw 7→z ≡

{
Rw 7→z;Su if u ̸= w,

Ru7→z if u = w.
(by (5) and (6))

The inductive case is very similar to that of Lemma Appendix A.1.

Corollary Appendix A.18 (Proposition 6.8). Any term is equal to a term in
an ICE-form.

57

	Introduction
	Retrosynthetic Analysis
	Existing tools

	Chemical Graphs
	Chirality

	Pre-Chemical Graphs Form an Adhesive Category
	Adhesivity

	Chemical Reactions as Double Pushout Rewriting
	The Category of Disconnection Rules
	Normal Form

	From Disconnections to Reactions, Functorially
	Layered Props
	Retrosynthesis in Layered Props
	Discussion and Future Work
	Future Work

	ICE-form

