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Abstract

Nishimura [4] introduced the concept of a manual in an orthogonal cat-
egory in order to formalize the relationships between partially overlapping
Boolean algebras in category theoretical language. Our main objectives
here are to briefly discuss the axioms and provide a concrete example of
a manual. It is demonstrated that one of the axioms in the definition
of an orthogonal category can be derived from the other axioms, hence
the number of axioms is reduced. We then give a more general definition
of a manual, substituting the subcategory in the definition of Nishimura
by any category with a faithful functor. We proceed to show that the
category of Hilbert spaces equipped with direct sums provides an exam-
ple of an orthogonal category, after which an example of a manual in the
category of Hilbert spaces is provided and discussed in detail. In the last
section we outline the connection between manuals and unitary operators
on Hilbert spaces.

1 Introduction

It is known that the projection algebra of self-adjoint operators on a Hilbert
space is, in general, not Boolean. However, it is possible to choose a set of oper-
ators contained in a complete Boolean algebra [1, ch. 7]. The task of quantum
logic and set theory then becomes to study the interactions between such sets.

Classically, each set can be thought of as a Boolean-valued set, that is, each
set X can be equipped with a function from X×X to a complete Boolean alge-
bra, measuring to what extent two sets are the same in some sense (alternatively,
the ‘probability’ with which an element of X is in both sets). This generalises
to the concept of a subobject classifier in a suitable category [1, Appendix]. The
idea of Nishimura [4] is to find a construction capturing the analogous structure
of projection algebras, or more generally, the structure of partially overlapping

1This report is an outcome of an undergraduate research project I did during the summer of
2017. The project was supervised by Chris Heunen (School of Informatics) and I was granted
an Undergraduate Research Bursary from London Mathematical Society.
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operations as introduced by Foulis and Randall [2]. This leads to the notion of
an empirical set over a manual.

Foulis and Randall [2] introduced the notion of a manual with the aim of
formalizing the foundations of all empirical sciences; a manual consist of all
possible operations that can be performed within a certain theory. The con-
cept of an operation in their formalism is left undefined on purpose so as to
ensure generality of the discussion, it is taken as a starting point, everything
else being defined rigorously in terms of operations. However, informally, the
operations are assumed to correspond to actual physical procedures. Hence the
way to think about a manual is to perceive it as a collection of instructions for
performing physical procedures which have a meaningful outcome within the
theory in question. For quantum mechanics, a manual therefore consist of all
operators on Hilbert space corresponding to physical observables.

The subobject classifier for empirical sets takes its values in a manual, which
is not necessarily a Boolean algebra due to its empirical nature; this is to say
that the logic of an empirical set is determined by the manual. In particular,
for the manual of operators on Hilbert space the logic of an empirical set will
be precisely the ‘correct’ logic of quantum mechanics. In this report, however,
we will not get as far as empirical sets, and they are mentioned mainly for
completeness of the broader view; for detailed discussion the reader is referred
to Nishimura [4].

The main aim of this report is to understand the concept of a manual via
concrete example, which will be provided by a Hilbert space together with a
certain collection of its subspaces. The next two sections are largely repeating
the definitions given by Nishimura [4], although we discuss the axioms in more
detail in order to motivate them and provide some intuition. Moreover, we show
that one of the axioms is redundant, and give a slightly more general definition
of a manual. Namely, we do not require a manual to be a subcategory of an
orthogonal category, but rather any category equipped with a faithful functor
to the orthogonal category; this is motivated by our example, which becomes
more interesting with this definition. A manual as defined by Nishimura [4] is
then a special case of a manual as defined here.

Since the symmetries of a Hilbert space are not accounted for by the def-
inition of a manual, including the symmetries could be of interest for future
research. Thus the concluding section briefly considers unitary operators on
Hilbert spaces and their effects on a manual.

2 Orthogonal Categories

We follow Nishimura [4] in defining an orthogonal category. Our motivating
example is the category of Hilbert spaces together with the direct sums.

Let (K, os) be a pair consisting of a category K and a class of cocones in K
indexed by a discrete category, called orthogonal sum diagrams and denoted by
os. The vertex of the cocone is called the orthogonal sum of the base objects.
An orthogonal category is a pair (K, os) satisfying the conditions (1) to (9).

(1) The category K has an initial object.

Initial objects play the role of the ‘additive identity’ for orthogonal sums, this
is made precise by axiom (6). For this reason such an object is called trivial.
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(2) For any small family of objects {Xλ}λ∈Λ in K, there exists an orthogonal
sum diagram having {X}λ∈Λ as the base. That is, there is an object Y

and morphisms {fλ}λ∈Λ in K such that the cocone {Xλ
fλ−→ Y }λ∈Λ is in

os.

(3) If both {Xλ
fλ−→ Y }λ∈Λ and {Xλ

gλ−→ Z}λ∈Λ are in os, then there exists a

unique morphism Y
h−→ Z in K such that gλ = h ◦ fλ for each λ ∈ Λ.

Hence any small collection of objects of K has an orthogonal sum; moreover, it
turns out that (3) implies that two orthogonal sums of the same summands are
isomorphic, we will prove this later. In fact (3) ‘almost’ turns os into the class
of coproducts in K; the universal property is however, restricted to orthogonal
sum diagrams rather than being true for all cocones.

(4) Given cocones {Yλ
gλ−→ Z}λ∈Λ and {Xδ

fδ−→ Y }δ∈∆λ
(λ ∈ Λ) in K, the

composite cocone {Xδ
gλ◦fδ−−−−→ Z|λ ∈ Λ and δ ∈ ∆λ} lies in os iff all the

cocones {Yλ
gλ−→ Z}λ∈Λ and {Xδ

fδ−→ Y }δ∈∆λ
(λ ∈ Λ) lie in os, where the

sets ∆λ are mutually disjoint.

(5) If the cocone {Xδ
fδ−→ Y |λ ∈ Λ and δ ∈ ∆λ} lies in os, then there exist

cocones {Xδ
gδ−→ Zλ}δ∈∆λ

(λ ∈ Λ) and {Zλ
hλ−−→ Y }λ∈Λ such that fδ =

hλ ◦ gδ for any λ ∈ Λ and δ ∈ ∆λ, where, again, the sets ∆λ are mutually
disjoint.

These two axioms can be summarised as ‘composition’ and ‘factorisation’. In-
deed, (4) states that a composition of two orthogonal sum diagrams is itself an
orthogonal sum diagram, and that if a composition of two cocones happens to
be an orthogonal sum diagram, then so are the cocones. (5), in turn, says that
if the indexing set of an orthogonal sum diagram factorises into disjoint sets,
then the orthogonal sum diagram factorises into constituent cocones. Note that
by (4) these cocones are also orthogonal sum diagrams.

(6) Given cocones {Xλ
fλ−→ Y }λ∈Λ and {Xδ

gδ−→ Y }δ∈∆ in K, if Xδ is trivial for

all δ ∈ ∆, then {Xλ
fλ−→ Y }λ∈Λ is in os iff {Xλ

fλ−→ Y }λ∈Λ∪{Xδ
gδ−→ Y }δ∈∆

is in os.

(7) Given cocones {Xλ
fλ−→ Y }λ∈Λ and {Xδ

gδ−→ Y }δ∈∆ in K, if both {Xλ
fλ−→

Y }λ∈Λ and {Xλ
fλ−→ Y }λ∈Λ ∪ {Xδ

gδ−→ Y }δ∈∆ are in os, then Xδ is trivial
for all δ ∈ ∆.

Thus (6) makes precise the role of the trivial objects, they can be added to an
orthogonal sum diagram, or taken away from it, without changing the orthogo-
nal sum. Moreover, (7) states that the trivial objects are the only objects that
can be added to an orthogonal sum diagram without changing the orthogonal
sum, so the orthogonal sums are maximal in this sense.

(8) If f : X → Y is an isomorphism in K, then the cocone {X f−→ Y } is in os.

(9) Given an orthogonal sum diagram {Xλ
fλ−→ Y }λ∈Λ, if fλ1

= fλ2
for some

distinct λ1, λ2 ∈ Λ (so that Xλ1
= Xλ2

), then Xλ1
= Xλ2

is trivial.
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In (9) we require that all the morphisms in an orthogonal sum diagram are
distinct up to the trivial maps. The following converse to (8) gives us a hint
what the orthogonal sum diagrams are by considering a degenerate case of only
one summand.

Proposition 2.1. If a cocone {X f−→ Y } is in os, then f is an isomorphism.

Note that in Nishimura [4] Proposition 2.1 is given as another axiom for
orthogonal category, it is, however, derivable from the axioms (3) and (8). For
this, we need the following result.

Lemma 2.2. The orthogonal sums of the same summands are isomorphic.

Proof. Given cocones {Xλ
fλ−→ Y }λ∈Λ and {Xλ

gλ−→ Z}λ∈Λ is os, we have to
show that Y and Z are isomorphic. By (3), there exist unique morphisms
h : Y → Z and i : Z → Y such that gλ = h ◦ fλ and fλ = i ◦ gλ for all λ ∈ Λ.
Combining these two we get that h ◦ i : Z → Z is the unique morphism such
that gλ = h ◦ i ◦ gλ for all λ ∈ Λ, which implies that h ◦ i = idZ . Similarly, we
get that i ◦ h = idY , thus we have found the required isomorphism.

Proposition 2.1 now follows by first noting that {X idX−−→ X} is in os by

(8), and then applying Lemma 2.2 to orthogonal sum diagrams {X f−→ Y } and

{X idX−−→ X}.
To conclude the definition of an orthogonal category, we introduce some

terminology and notation. For brevity, the category K itself will be called an
orthogonal category by a slight abuse of language. An orthogonal sum of Xλ’s
is denoted by

⊕
λ∈ΛXλ. We call a morphism f : X → Y an embedding if there

exists a morphism g : Z → Y such that X
f−→ Y

g←− Z is in os. Two embeddings
f : X → Y and g : Z → Y with common codomain are equivalent if there exists
an isomorphism h : X → Z in K such that f = g ◦ h.

3 Manuals

We next introduce the notion of a manual in an orthogonal category. We present
a slightly modified version of the definition given by Nishimura [4]. While in
[4] a manual is required to be a subcategory of a given orthogonal category, we
merely ask the manual to be equipped with a faithful functor to the orthogonal
category, thus the notion of a manual as given by Nishimura is a specific case
of the definition presented here. The example motivating this slightly more
general definition is a decomposition of a given Hilbert space into its orthogonal
subspaces together with a choice of an isometry for each subspace, this will be
discussed in detail in Section 6. First, however, we will need some nomenclature
to be used in the definition.

Given an orthogonal category K, let a pair (M,F) denote a small category
M together with a faithful functor F : M→ K. We say that a diagram K of K
can be pulled back to M if there exists a diagram M in M such that F(M) = K.

Two objects X and Y in M are called M-orthogonal, denoted by X ⊥M Y ,

if there exists a diagram X
f−→ Z

g←− Y in M such that F(X
f−→ Z

g←− Y ) is in
os. An initial object X of M such that F(X) is K-trivial is called M-trivial.
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An object X in M is M-maximal if for all Y in M, X ⊥M Y implies that Y is
M-trivial. Objects X and Y of M are M-equivalent, denoted by X 'M Y , if
for all Z in M, X ⊥M Z iff Y ⊥M Z.

A cocone D = {Xλ
fλ−→ Y }λ∈Λ in M, for which F(D) is in os, is said to

be an orthogonal M-sum diagram if for every cocone C = {Xλ
gλ−→ Z}λ∈Λ in

M with the property that F(C) is in os, the unique morphism F(Y )
h−→ F(Z)

of axiom (3) can be pulled back to M. In this case Y is called an orthogonal

M-sum of Xλ’s and is written as
⊕M

λ∈ΛXλ. For only a few objects, we use such
notation as X ⊕M Y . Analogously to an embedding in K, an M-embedding is a
morphism f : X → Y for which there exists a morphism g : Z → Y such that

X
f−→ Y

g←− Z is an orthogonal M-sum diagram, in which case we say that X is
an M-subobject of Y .

A manual in K (or a K-manual) is a pair (M,F) satisfying the conditions
(10) to (17).

(10) For any pair of objects (X,Y ) in M, there is at most one morphism from
X to Y in M.

(11) There exists at least one object X in M such that F(X) is K-trivial.

(12) Every object in M with the property as in (11) is M-trivial.

Next we would like to say that if there is a morphism from X to Y , then X is
something like a subspace of Y . The trivial objects are then subspaces of any
object. Further, we would like M-orthogonality to mimic the orthogonality of
subspaces.

(13) For any objects X and Y in M, if there is a morphism from X to Y in M,
then for any object Z in M, Y ⊥M Z implies X ⊥M Z.

(14) For any M-orthogonal objects X and Y , there exists an object Z of the
form Z = X ⊕M Y in M.

(15) For any object Z of the form Z = X⊕M Y in M, X ⊥M W and Y ⊥M W
imply Z ⊥M W for any object W in M.

(16) For any objects X and Y in M, X 'M Y iff there exists an object Z in
M such that X ⊥M Z, Y ⊥M Z and both X ⊕M Z and Y ⊕M Z are
M-maximal.

(17) For any commutative diagram

X Y
f //

Z

g

��

h

CC

of K, if f : X → Y and h : Z → Y can be pulled back to M in such a
way that the morphism h′ in M, for which F(h′) = h, is an M-embedding,
then g : X → Z can be pulled back to M.
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A K-manual (M,F) is rich if the following holds:

(18) For any object X in M and any embedding f : Y → F(X) in K, there
exists an M-embedding f ′ : Y ′ → X such that f and F(f ′) are equivalent
in K.

A K-manual (M,F) is completely coherent if the following holds:

(19) For any infinite family {Xλ}λ∈Λ of pairwise M-orthogonal objects in M,

there exists an object Z in M such that Z =
⊕M

λ∈ΛXλ.

4 Bounded Coproducts in Hilb

Definition 4.1. (Bounded linear map, bounded collection of linear maps) A
linear map f : X → Y is said to be bounded if there exists some M > 0 such
that for all x ∈ X we have ‖f(x)‖Y ≤M ‖x‖X . Let us call the smallest such M

Mf . We say that a collection {Xi
fi−→ Y }i∈I of bounded linear maps is bounded

if the set {Mfi}i∈I is bounded.

Let Hilb be the category whose objects are all Hilbert spaces and morphisms
all bounded linear maps between them. We define the (external) direct sum of
a family of Hilbert spaces as follows.

Definition 4.2. (External direct sum of Hilbert spaces) Let {Hi}i∈I be a family
of Hilbert spaces. The direct sum of the family is the subset of the Cartesian
product of {Hi}i∈I containing all those elements x = (xi|i ∈ I) for which∑
i∈I ‖xi‖

2
Hi
<∞. The addition and scalar multiplication are defined termwise,

and the inner product of the elements x and y in the direct sum is defined by

(x, y) =
∑
i∈I

(xi, yi)Hi .

The (external) direct sum as defined above is itself a Hilbert space and
is denoted by

⊕
i∈I Hi. Given a Hilbert space H, suppose a collection of its

subspaces {Hi}i∈I satisfies

1. for hi ∈ Hi and hj ∈ Hj , (hi, hj) = 0 whenever i 6= j, and

2. any element h ∈ H can be written as h =
∑
i∈I hi such that

∑
i∈I ‖hi‖

2
<

∞, where hi ∈ H for each i ∈ I.

In this case we say that H is the internal direct sum of the subspaces {Hi}i∈I .
It is straightforward to see that if H is the internal direct sum of {Hi}i∈I ,
then H is isomorphic to the external direct sum

⊕
i∈I Hi; we define the map

f : H →
⊕

i∈I Hi by h =
∑
i∈I hi 7→ x = (hi|i ∈ I), where each hi ∈ Hi, and

the map g :
⊕

i∈I Hi → H by x = (hi|i ∈ I) 7→ h =
∑
i∈I hi. Now f and g are

bounded linear maps which are mutually inverse. Because of this isomorphism,
we will in general not distinguish between internal and external direct sums and
will talk about the direct sum.

We next define the coprojection morphism for a direct sum.
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Definition 4.3. (Coprojection) Let
⊕

i∈I Hi be the (external) direct sum of
Hilbert spaces {Hi}i∈I . For each Hilbert space Hλ in the indexed family, define
the coprojection Π

λ : Hλ →
⊕

i∈I Hi by v 7→ (xi|i ∈ I), where

xi =

{
v for i = λ

0 otherwise.

Observe that each Π

λ is monic. Further, observe that each Π

λ has a right
inverse sending x = (xi|i ∈ I) to xλ if we restrict its domain to Hλ. It follows
that whenever we have f ◦ Π

λ = g ◦ Π

λ for some morphisms f and g and for all
λ ∈ Λ, then f = g. The maps { Π

λ}λ∈Λ are said to be jointly epic.
Our aim is to find such a collection of cocones in Hilb that it becomes

an orthogonal category. We note that something like a coproduct structure
would do the job, which motivated the introduction of direct sums. However,
since we require the linear maps in Hilb to be bounded, the direct sums and
coprojections do not quite provide the coproduct structure, as demonstrated by
Example 4.6. This can be worked around by making the following restriction.

Definition 4.4. (Bounded coproduct) A cocone in Hilb which is universal
on bounded cocones will be called a bounded coproduct diagram. Explicitly,
a bounded coproduct of a collection of objects {Xi}i∈I consists of an object

Y together with a bounded collection of morphisms {Xi
σi−→ Y }i∈I such that

for any bounded collection of morphisms {Xi
fi−→ A}i∈I , there exists a unique

morphism h : Y → A such that the diagram

Xi Y
σi //

A

h

��

fi

$$

commutes for each i ∈ I.

Note that bounded coproducts satisfy the axiom (3) for orthogonal cate-
gories. It thus follows by Lemma 2.2 that bounded coproducts are unique up
to a unique isomorphism, we can therefore talk of the coproduct of Xi’s.

Proposition 4.5. The bounded coproduct structure of Hilb is given by the
direct sums and the corresponding coprojections.

Proof. We have to show that given a bounded family of morphisms fλ : Hλ → A
(λ ∈ I), there exists a unique morphism h :

⊕
i∈I Hi → A such that the diagram

Hλ

⊕
i∈I

Hi

Π

λ //

A

h

��

fλ

$$
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commutes.
For an x = (xi|i ∈ I) ∈

⊕
i∈I Hi, we define h(x) =

∑
i∈I fi(xi). Note that h

is bounded since we require {fi}i∈I to be bounded. Now clearly h ◦ Π

λ = fλ for
each λ ∈ I, which proves the existence. For uniqueness, assume there is another
such morphism g. We thus have h ◦ Π

λ = g ◦ Π

λ for all λ ∈ I, since Π

λ’s are
jointly epic, it follows that g = h.

In the construction of the morphism h it is crucial that the collection {fi}i∈I
is bounded. We demonstrate this with the following example.

Example 4.6. Let {Cn
fn−→ C}n∈N be a set of endomorphisms of the complex

numbers Cn such that each fn is multiplication by n, that is, fn(x) = nx for
each n ∈ N. Now each fn is a bounded linear map, but the set of maps is
unbounded. Let Π

λ : Cλ →
⊕

n∈N Cn be the corresponding coprojections. If
we now try to construct the morphism h as in the proof of Proposition 4.5, for
x = (xn|n ∈ N) in the direct sum we get h(x) =

∑
n∈N fn(xn) =

∑
n∈N nxn,

which is not bounded and hence not a morphism in Hilb.

We will denote the class of bounded coproduct diagrams in Hilb by ds.
Since coproducts are unique up to an isomorphism, this includes both internal
and external direct sums of Hilbert spaces, the maps as defined in 4.3 being one
possible representation of general coprojection morphisms.

5 Hilb is Orthogonal

Here we will show that (Hilb, ds) is an orthogonal category as defined in Section
2.

(1) is satisfied since Hilb has an initial object, namely the zero vector space.
The category satisfies axiom (2) since any collection of Hilbert spaces has a
direct sum, and the axiom (3) is satisfied by the universal property of bounded
coproducts.

To show that (4) holds, first assume that all the diagrams {Yλ
gλ−→ Z}λ∈Λ

and {Xδ
fδ−→ Yλ}δ∈∆λ

(λ ∈ Λ) are in ds, where the sets ∆λ are mutually disjoint.

We need to show that the diagram {Xδ
gλ◦fδ−−−−→ Z|λ ∈ Λ and δ ∈ ∆λ} is in ds.

To see this, consider the following diagram.

Xδ Yλ
fδ // Z

gλ //

B

j

��

iδ

%%

hλ

��

(1)
(2)

(5.1)

Thus fδ and gλ are coprojections, and Yλ, Z direct sums. Hence for every

bounded collection of morphisms {Xδ
iδ−→ B}δ∈∆λ

, there is a unique morphism
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Yλ
hλ−−→ B such that the triangle (1) commutes. We therefore obtain the bounded

collection of morphisms hλ (λ ∈ Λ). Again, for this collection there is a unique

morphism Z
j−→ B such that the triangle (2) commutes. We have thus shown

that for every bounded collection of morphisms iδ (λ ∈ Λ and δ ∈ ∆λ), there
exists a unique morphism j such that the outer triangle commutes. Hence gλ◦fδ
is indeed a bounded coproduct and so in ds.

Conversely, suppose that {Xδ
gλ◦fδ−−−−→ Z|λ ∈ Λ and δ ∈ ∆λ} is a bounded

coproduct. We have to show that {Yλ
gλ−→ Z}λ∈Λ and {Xδ

fδ−→ Yλ}δ∈∆λ
(λ ∈ Λ)

are bounded coproducts. We begin with the former one. Given any bounded

collection of morphisms {Yλ
hλ−−→ B}λ∈Λ, define iδ := hλ ◦ fδ for all λ ∈ Λ and

δ ∈ ∆λ. Now there exists a unique morphism j such that the outer triangle
in the diagram 5.1 commutes. Hence we have j ◦ gλ ◦ fδ = hλ ◦ fδ. Since this
holds for every δ ∈ ∆λ, we must have j ◦ gλ = hλ for all λ ∈ Λ proving that

{Yλ
gλ−→ Z}λ∈Λ is indeed a bounded coproduct. Similarly, given any bounded

collection {Xδ
iδ−→ B}, there exists a unique j such that the outer triangle in

the diagram 5.1 commutes. We define hλ := j ◦ gλ for all λ ∈ Λ, consequently
the triangle (1) commutes. Moreover, hλ is the unique such morphism; if we
assume we have m : Yλ → B such that the triangle (1) commutes, we have

m ◦ fδ = hλ ◦ fδ for all δ ∈ ∆λ and so m = hλ. Thus {Xδ
fδ−→ Yλ}δ∈∆λ

is a
bounded coproduct for each λ ∈ Λ. Note that in both cases we have used the
fact that fδ’s are jointly epic. This concludes the proof of (4).

To prove that (5) holds, suppose that {Xδ
fδ−→ Y |λ ∈ Λ and δ ∈ ∆λ} is a

bounded coproduct. Now define the objects Zλ as the direct sums
⊕

δ∈∆λ
Xδ

for each λ ∈ Λ. Further, define the morphisms gδ : Xδ → Zλ to be the copro-
jections, and the morphisms hλ the coprojections from each Zλ to Y . It now
follows that hλ ◦gδ are the coprojections from each Xδ to Y , hence hλ ◦gδ = fδ,
as required.

If
⊕

λ∈ΛXλ is a direct sum, and Zδ is the trivial vector space for all δ ∈ ∆,
then clearly

⊕
λ∈ΛXλ ⊕

⊕
δ∈∆ Zδ '

⊕
λ∈ΛXλ. This implies that (6) holds.

Conversely, if
⊕

λ∈ΛXλ and
⊕

δ∈∆ Zδ are direct sums, and we have
⊕

λ∈ΛXλ⊕⊕
δ∈∆ Zδ '

⊕
λ∈ΛXλ, then Zδ must be the trivial vector space for all δ ∈ ∆;

and so (7) holds.
For (8), suppose f : X

∼−→ Y is an isomorphism. Given any morphism
g : X → B, let ḡ = g ◦ f−1. Now the diagram

X Y
f

∼
//

B

ḡ

��

g

$$

commutes. Moreover, since f has an inverse, ḡ is the unique such morphism,
making the diagram into a bounded coproduct.

For (9), let {Xλ
fλ−→ Y }λ∈Λ be in ds. Then by Lemma 2.2 there is an

isomorphism h from Y to the direct sum of Xλ’s such that the diagram
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Xλ

⊕
i∈Λ

Xλ

Π

λ //

Y

OO

h
fλ

$$

commutes for each λ ∈ Λ. Now if fλ1 = fλ2 for some distinct λ1 and λ2, then

Π

λ1
= Π

λ2
, which in turn implies Π

λ1
(x) = Π

λ2
(x) = 0 for all x ∈ Xλ1

= Xλ2
by

Definition 4.3. It then follows that Xλ1
= Xλ2

is trivial.

6 Manuals in Hilb

Next we state what a manual is in Hilb and prove that the axioms of Section
3 are satisfied.

Given a Hilbert space H, we define a category MH as follows. Let (X,m)
denote a pair of a Hilbert space X and a choice of an isometry m : X → H
in Hilb, provided such a map exists. Note that a linear isometry is necessarily
monic. The objects of MH are all such pairs (X,m). If it is clear from the
context which map is in question, we will sometimes omit it and write X for
an object in MH . Given two objects (X,m) and (X ′,m′) of MH , define a
morphism from (X,m) to (X ′,m′) as the map f : X → X ′ in Hilb such that
the diagram

X X ′
f //

H

m

�� ��

m′

of Hilb commutes. Note that such f , if it exists, is necessarily unique, justifying
the expression ‘the map’ in the definition above. Moreover, such f is itself an
isometry, since for x, y ∈ X we have(

f(x), f(y)
)
X′ =

(
(m′ ◦ f)(x), (m′ ◦ f)(y)

)
H

=
(
m(x),m(y)

)
H

=
(
x, y
)
X
.

Define the functor F : MH → Hilb by F(X,m) = X and by mapping the
morphisms in MH to themselves in Hilb. We now claim that (MH ,F) is a
manual in Hilb, moreover, it is rich and completely coherent. Before proving
this, we will need some preliminary results.

Proposition 6.1. The objects (X,mX) and (Y,mY ) in MH are MH-orthogonal
if and only if the images of mX and mY are orthogonal as vector subspaces of
H.

Proof. First suppose that Im(mX) ⊥ Im(mY ). Then the unique morphism
[mX ,mY ] in the diagram

10



X X ⊕ Y

Π

X // Yoo

Π

Y

H

mY

||

mX

""

[mX ,mY ]

��

is monic and an isometry by the definition of direct sum. Note that we have
introduced the notation [mX ,mY ] for the unique map from X⊕Y to H defined

by (x, y) 7→ mX(x) +mY (y). Consequently, the diagram X

Π

X−−→ X ⊕ Y

Π

Y←−− Y
is in MH , and so X ⊥MH

Y .
Now suppose that X ⊥MH

Y , that is, the unique morphism [mX ,mY ] in
the above diagram is an isometry. Now let x ∈ X and y ∈ Y , and consider the
inner product(
mX(x),mY (y)

)
H

=
(
mX(x) +mY (0),mX(0) +mY (y)

)
H

=
(
[mX ,mY ](x, 0), [mX ,mY ](0, y)

)
H

=
(
(x, 0), (0, y)

)
X⊕Y (since [mX ,mY ] is an isometry)

=
(
x, 0
)
X

+
(
0, y
)
Y

= 0.

Since this holds for any x ∈ X and y ∈ Y , the images are indeed orthogonal.

Proposition 6.2. An object (X,mX) in MH is MH-maximal if and only if
mX is an (isometric) isomorphism of Hilbert spaces.

Proof. One direction is straightforward; if mX is an isomorphism, then the only
Hilbert space that can be added to X such that there still is an injection from
the direct sum to H is the zero space. For the converse, assume that (X,mX) is
MH -maximal, that is, for any object (Z,mZ) in MH , if Z ⊥MH

X then Z is the
zero space. By Proposition 6.1, this is equivalent to assuming that Z is the zero
space whenever we have Im(mX) ⊥ Im(mZ). To see that mX is surjective, let
Z be the subspace of H defined by Z = Im(mX)⊥, and mZ the inclusion of Z
into H. We now have Im(mX) ⊥ Im(mZ) by definition, and so Z = Im(mX)⊥

is the zero space. Consequently Im(mX) = H, and so mX is an isomorphism,
as required.

Maximal objects in MH are thus precisely the Hilbert spaces isomorphic to
H, in particular, H is maximal.

Proposition 6.3. The objects (X,mX) and (Y,mY ) in MH are MH-equivalent
if and only if mX and mY have the same image.

Proof. This is a straightforward consequence of Proposition 6.1. Let (Z,mZ) be
an object in MH . If Im(mX) = Im(mY ), then manifestly Im(mZ) ⊥ Im(mX)
if and only if Im(mZ) ⊥ Im(mY ). Conversely, if X 'MH

Y , then Im(mZ) ⊥
Im(mX) if and only if Im(mZ) ⊥ Im(mY ), since this is the case for any object
Z in MH , we must have Im(mX) = Im(mY ).

Note that the Proposition 6.3 entails that MH -equivalent objects are iso-
morphic as vector spaces.

11



We are now ready to prove our claim that (MH ,F) is a Hilb-manual. First,
we note that (10) holds by uniqueness of the morphism between objects of MH .
Since there is always a map from the zero space to any Hilbert space (and it is
trivially an isometry), it is an object of MH and so (11) holds. The zero space
is also the initial object in MH , implying (12) is satisfied.

In order to show that (13) holds, assume there is a morphism f : (X,mX)→
(Y,mY ) in MH , hence the diagram

X Y
f //

H

mX

�� ��

mY

is commutative. We need to show that Z ⊥MH
Y implies Z ⊥MH

X for every
object (Z,mZ) in MH , that is, by Proposition 6.1, Im(mX) ⊥ Im(mZ) whenever
Im(mY ) ⊥ Im(mZ). It is thus sufficient to show that Im(mX) ⊆ Im(mY ).
Suppose that h ∈ H is an element of Im(mX), hence there is an x ∈ X such
that mX(x) = h. This implies that mY (f(x)) = h, and so h is an element of
Im(mY ), as required.

For (14), suppose that the objects (X,mX) and (Y,mY ) of MH are MH -

orthogonal, that is, the object X ⊕ Y in the orthogonal sum diagram X

Π

X−−→
X ⊕ Y

Π

Y←−− Y of Hilb is also an object of MH . We will show that X ⊕ Y =
X ⊕MH

Y . Suppose that the diagram (X,mX)
σX−−→ (Z,mZ)

σY←−− (Y,mY ) is in

MH and X
σX−−→ Z

σY←−− Y is an orthogonal sum diagram of Hilb. We need to
show that the unique morphism h : Z → X ⊕ Y of axiom (3) is in MH . This
follows neatly by drawing a diagram.

X Z
σX //

H

mX

))

X ⊕ Y

Π

X

55

mZ

$$

h

::

Y
σYoo

Π

Y

GG

mY

��

[mX ,mY ]

��

Now every subdiagram is either part of a coproduct or a diagram defining a
morphism between objects of MH , consequently, each of them commutes and
so the entire diagram commutes. In particular, we have mZ = [mX ,mY ] ◦ h,
implying that h is in MH .

Next, assume that Z = X ⊕MH
Y for objects (X,mX) and (Y,mY ) in

MH . To prove that (15) is satisfied, we need to show that X ⊥MH
W and

Y ⊥MH
W imply Z ⊥MH

W for any object (W,mW ) in MH . By proposition
6.1, we have to show that Im(mX) ⊥ Im(mW ) and Im(mY ) ⊥ Im(mW ) imply
Im
(
[mX ,mY ]

)
⊥ Im(mW ). But Im

(
[mX ,mY ]

)
is just the direct sum of Im(mX)

12



and Im(mY ), which is by assumption also a subspace of H. If Im(mW ) is
orthogonal to two subspaces of H, it is also orthogonal to their direct sum.

For (16), first assume that the objects (X,mX) and (Y,mY ) are MH -equivalent,
which by Proposition 6.3 means that Im(mX) = Im(mY ). Let Z = Im(mX)⊥ =
Im(mY )⊥ and mZ the inclusion of Z into H. (Z,mZ) is then an object of
MH , and we have Im(mX) ⊥ Im(mZ), which by Proposition 6.1 implies that
X ⊥MH

Z and Y ⊥MH
Z. Moreover, by Proposition 6.2 X⊕MH

Z and Y ⊕MH
Z

are MH -maximal, since X ⊕MH
Z ' H. Conversely, suppose there is an ob-

ject (Z,mZ) in MH such that Im(mX) ⊥ Im(mZ), Im(mY ) ⊥ Im(mZ) and
X ⊕MH

Z ' Y ⊕MH
Z ' H. This implies that H = Im(mX) ⊕ Im(mZ) =

Im(mY ) ⊕ Im(mZ), and so Im(mX) = Im(mY ) by uniqueness of orthogonal
complements.

For (17), suppose that the diagram

X Y
f //

Z

g

��

h

CC

of Hilb commutes. Further, suppose that there are maps mX , mY and mZ

such that (X,mX), (Y,mY ) and (Z,mZ) are objects in MH , and f : (X,mX)→
(Y,mY ) and h : (Z,mZ)→ (Y,mY ) morphisms between these objects. We want
to show that g : (X,mX)→ (Z,mZ) is also a morphism in MH . This amounts
to showing that the outer triangle in the diagram

X Y
f //

Z

g

��

h

CC

H
mX

,,

mY

44

mZ

FF

commutes. This immediately follows from commutativity of the three smaller
triangles.

We will next show that (MH ,F) is completely coherent, that is, (19) holds.
Given an infinite family (Xλ,mXλ)λ∈Λ of pairwise MH -orthogonal objects in
MH , let Z =

⊕
λ∈ΛXλ be the orthogonal sum of Xλ’s in Hilb. We will show

that Z =
⊕MH

λ∈ΛXλ. Since the images of mXλ are pairwise orthogonal, the
unique morphism mZ : Z → H is monic and an isometry by its definition. It is

thus sufficient to show that for any orthogonal sum diagram {Xλ
fλ−→ Y }λ∈Λ of

Hilb which can be pulled back to MH , the unique morphism h of the diagram
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Xλ Z

Π

λ //

H

mXλ

''

Y

fλ

77

mZ

��

h

DD

mY

��

is in MH . By commutativity of the outer triangle and the two inner triangles
on the left, we have mY ◦ h ◦ Π

λ = mZ ◦ Π

λ for all λ ∈ Λ. Since the Π

λ’s are
jointly epic, we have that mY ◦ h = mZ , as required.

In order to prove that (MH ,F) is rich, that is, (18) holds, we will need two
intermediate results given by Lemmas 6.4 and 6.5.

Lemma 6.4. The image of a bounded, linear isometry of Hilbert spaces is com-
plete.

Proof. Let f : Y → X be a bounded, isometric linear map between Hilbert
spaces Y and X. Given a Cauchy sequence {xn}n∈N in the image of f , we have
to show that there exists an x ∈ Im(f) such that xn → x. Since the sequence is
in the image of f , thre is a sequence {yn}n∈N in Y such that f(yn) = xn for all
n. Since {xn}n∈N is Cauchy, for all ε > 0 there is an N ∈ N such that

n,m ≥ N =⇒ ‖xn − xm‖ < ε

=⇒ ‖f(yn − ym)‖ < ε

=⇒ ‖yn − ym‖ < ε (since f is an isometry),

hence showing that {yn}n∈N is Cauchy. Being a Hilbert space Y is complete,
and so there exists y ∈ Y such that yn → y. Because f is a bounded linear
map, it is continuous, hence we must have f(yn)→ f(y) in X, that is, xn → x,
where x = f(y) ∈ Im(f).

For a proof of the following, see Halmos [3].

Lemma 6.5. [3, ch. 16, p. 74, Problem 134.] If f : Y → X is a bounded
linear map between Hilbert spaces Y and X, then there exists a partial isometry
u : Y → X and a positive endomorphism p of Y such that f = u ◦ p. The maps
u and p can be found such that ker(u) = ker(p), and this additional condition
uniquely determines them.

Such unique representation of f as composition of u and p is called the polar
decomposition of f .

Remark 6.6. We observe that if f is monic, then both u and p are monic. To
see this, suppose we have some maps g1, g2 : Z →→ Y such that p◦g1 = p◦g2. This
implies u ◦ p ◦ g1 = u ◦ p ◦ g2, but u ◦ p = f , which we are assuming to be monic,
hence g1 = g2, showing that p is monic. Consequently, ker(p) = ker(u) = 0,
and so u is also monic. Note that since u is a partial isometry, it is an isometry
on the orthogonal complement of its kernel, and so u being monic is a sufficient
condition for it to be an isometry.

14



In order to show that (18) is satisfied, suppose that (X,mX) is an object
in MH and f : Y → X is an embedding in Hilb. We need to find an MH -
embedding f ′ : (Y ′,mY ′) → (X,mX) such that f and f ′ are equivalent in
Hilb. We first note that the image of f is complete, this follows from f being
an embedding. In detail, there is a Hilbert space W and a morphism g such

that Y
f−→ X

g←−W is an orthogonal sum, hence there is an isomorphism h such
that the diagram

Y X
f // Woo g

Y ⊕W

Π

W

bb

Π

Y

<<

��

h ∼
commutes. In particular, we have f = h ◦ Π

Y . Since h is an isomorphism, it
maps complete sets to complete sets; since Π

Y is an isometry, completeness of
Im( Π

Y ) follows by Lemma 6.4, thus, Im(f) = Im(h◦ Π

Y ) is complete. Note that
we have also shown that f is monic.

Let us next write f as its polar decomposition, f = u ◦ p. Note that since
f is monic, it follows by Remark 6.6 that u is an isometry and p is monic.
Furthermore, we claim that the image of p is complete and therefore a Hilbert
space. To show this, we argue by contradiction; suppose that Im(p) is not
complete, that is, there is a sequence {yn}n∈N in Y such that {p(yn)}n∈N is
Cauchy but not convergent. Since u is an isometry, we therefore have that
the sequence {u ◦ p(yn)}n∈N = {f(yn)}n∈N is Cauchy but does not converge in
Im(u ◦ p) = Im(f), a contradiction.

If we now take Y ′ = Im(p) and mY ′ = mX ◦ u|Y ′ , then f ′ = u|Y ′ is the
desired MH -embedding, where we have denoted by u|Y ′ the restriction of u to
the image of p. It is easy to see that u|Y ′ is indeed an MH -embedding by letting
Z = Im(u|Y ′)⊥ and the map from Z to X the inclusion of Z into X. To see that
f and u|Y ′ are equivalent, it is sufficient to note that p is an isomorphism by
the choice of codomain, and that we have f = u ◦ p = u|Y ′ ◦ p. This concludes
the proof of (18).

We have thus shown that (MH ,F) is rich, completely coherent manual of
Hilb. We conclude this section with two observations.

Firstly, it is crucial in the definition of MH that we require the morphism mX

from X to H to be an isometry. This is what guarantees that MH -orthogonality
corresponds to the orthogonality of images. We could try to loosen this condition
and require the morphism mX to be merely monic, making X a subobject of
H, which would result in MH -orthogonality amounting to linear independence
of images. It is then straightforward to see that axiom (15) no longer holds.

Although the condition on mX cannot be weakened, it is not the strictest
one we can choose. A special case of a manual in Hilb is obtained by requiring
the morphism mX to be the actual inclusion of X into H. In this case all the
maps between objects of the manual are also inclusions, and the manual consists
of all the subspaces of H, and there is a map between two subspaces if and only
if one contains the other.
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7 Unitary Operators on Hilbert Spaces

As suggested by the concluding remarks of the previous section, (MH ,F) cap-
tures the subspace structure of H. In particular, it contains all the choices of
orthogonal bases for H. What we are interested in are the interactions between
the orthogonal bases; more precisely, given an operator on H, we are asking
what kind of transformation it induces on MH . We would like the operator to
preserve orthogonality, which suggests we should consider a unitary map, or at
least an isometry.

Let f be a unitary endomorphism of H. Now f induces an endofunctor Hf
of MH defined as follows. For every object (X,mX) of MH , let Hf (X,mX) =
(X, f ◦mX) and let Hf be identity on morphisms. That is, the commutative
diagram on the left is mapped to the commutative diagram on the right.

X Y
g //

H

mX

�� ��

mY

Hf //

X Y
g //

H

f◦mX

�� ��

f◦mY

Note that the requirement that f is unitary (or at least an isometry) is necessary
so that f ◦ mX and f ◦ mY are again isometries. Thus the action of f is
to ‘reshuffle’ the isometries between X and H, we will next make this more
precise.

Let X be a Hilbert space for which there exists an isometry from X to H.
Let us denote the set of all isometries from X to H by Iso(X,H). The unitary
endomorphism f then induces a function hf : Iso(X,H)→ Iso(X,H) defined by
m 7→ f ◦m. We note that such hf is a bijection. Injectivity follows by injectivity
of f . To see surjectivity, suppose that m : X → H is an isometry. Since f is
unitary, it has an inverse which is also unitary; if we thus define n := f−1 ◦m,
we have n ∈ Iso(X,H) and hf (n) = m. We have therefore shown that for each
Hilbert space X, f induces a permutation of the set Iso(X,H). Note that for
surjectivity of hf it is indeed necessary for f to be unitary rather than merely
an isometry.

We immediately ask if the converse is true. That is, given a choice of a per-
mutation of Iso(X,H) for every Hilbert space X, is the induced endomorphism
of H unitary? The answer turns out to be yes if we choose the permutations
consistently. Let hX be a choice of a permutation of Iso(X,H). Let Hp be a
choice of such permutation for every Hilbert space. Moreover, if X and Y are
Hilbert spaces, we require that the diagram on the right commutes whenever
the one on the left commutes.

X Y
g //

H

mX

�� ��

mY

Hp //

X Y
g //

H

hX(mX)

�� ��

hY (mY )

This again, ensures that Hp is an endofunctor of MH defined by

Hp
(
(X,mX)

g−−→ (Y,mY )
)

= (X,hX(mX))
g−−→ (Y, hY (mY )).
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The condition to preserve commutativity turns out to be so strict that it is
in fact sufficient to specify hH(idH), which fixes all the other permutations.
Indeed, if X is any Hilbert space from which there exists an isometry to H,
then the diagram

X H
mX //

H

mX

�� ��

idH

commutes for any isometry mX : X → H. We must therefore have hX(mX) =
hH(idH) ◦ mX for all mX ∈ Iso(X,H). In particular, we have hH(mH) =
hH(idH) ◦mH for all mH ∈ Iso(H,H). We now define f := hH(idH) and claim
that it is unitary. Since hH(idH) is an isometry, it is sufficient to show that f is
surjective. Thus suppose we have x ∈ H, then there exists some isometry whose
image contains x. Since hH is a bijection, there exists an m ∈ Iso(H,H) such
that Im(hH(m)) contains x. But we know that hH(m) = hH(idH) ◦m, and so
x must also be contained in the image of hH .

Observe that these two processes are mutually inverse; given a unitary f ,
the permutation hH is defined by m 7→ f ◦ m, and so hH(idH) = f ; and
conversely, the permutation of Iso(X,H) induced by hH(idH) sends each mX to
hH(idH) ◦mX , which is the original permutation we started with. Thus every
unitary operator on H can be thought of as a choice of an isometry to which
the identity morphism of H is mapped, which then determines a rearrangement
of isometries on H.

Since MH -orthogonality corresponds to orthogonality of images in H, the
functors Hf and Hp necessarily map MH -orthogonal sums to MH -orthogonal
sums, hence preserving the structure of the manual.
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