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Abstract

We translate the construction in Bourke [4] from identity type
categories to path categories to obtain an ‘iterated path object’ for
any object in a path category. We indicate why Bourke’s proof that
every object in an identity type category carries a Grothendieck weak
ω-groupoid structure does not straightforwardly carry over to path
categories. We indicate possible constructions that could make the
proof work.

1 Introduction

Given a type A in a Martin-Löf type theory, for any pair of elements a : A
and b : A there is an associated identity type IdA(a, b). Intuitively, every
element in IdA(a, b) corresponds to a proof that a and b are equal (if no
such proof exists, then the identity type is not populated by any element).
Since the work by Hofmann and Streicher [5], viewing types as spaces and
the identity types as spaces of paths (or higher homotopies) has provided
a fruitful perspective. Hofmann and Streicher show that the identity types
of A determine an equivalence relation on the elements of A, namely, one
declares that a ∼ b if and only if IdA(a, b) is populated. Furthermore, they
show that A has the structure of a groupoid, provided that we take the
equality up to higher identity types. Another highly influential insight of
Hofmann and Streicher is to construct a model of type theory where types
are in fact interpreted as groupoids. The identity type IdA(a, b) is then
interpreted as the (discrete) groupoid consisting of all morphisms between
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a and b in the groupoid A [1, p. 2]. Since there can multiple non-identical
morphisms between a and b, this model shows that it is impossible to show
that all elements of IdA(a, b) are equal (even if we take equality up to a higher
identity type).

This suggests a startlingly spatial interpretation of types: types may be
viewed as spaces, while their elements as points in the space. The identity
types then become path spaces, higher identity types homotopies between
paths, homotopies between homotopies and so on. But a space is more than
merely a groupoid; not only every path between two points has an inverse
path (up to a homotopy), but any homotopy between paths has an inverse
homotopy (up to a homotopy between homotopies). There is no reason to
stop at any point, and indeed: any topological space gives rise to an infinity
groupoid in this way. Inspired by this spatial analogy, a question arises: can
we mimic this infinite tower of paths in an arbitrary model of type theory?

It would indeed be plausible to assume that the answer to this question
is yes. For suppose we have two elements in the identity type p, q : IdA(a, b).
Since p and q are themselves types, we may iterate the application of the
construction rule of the identity type to obtain the identity type IdIdA(a,b)(p, q)
(if we think of p and q as paths between a and b, then the elements in this
iterated identity type are paths (homotopies) between paths).

It was indeed shown by van den Berg and Garner [2] that every object
in the syntactic category of intensional type theory admits the structure of a
weak ω-groupoid. They use the definition of a weak ω-category (and hence
that of a weak ω-groupoid) due to Batanin (more precisely, the version from
Leinster [6]). Bourke [4] reformulates their proof using the definition of a
weak ω-groupoid that first appeared in Grothendieck’s manuscript Pursuing
Stacks, and was simplified by Maltsiniotis [7]. Following Maltsiniotis and
Bourke, we term this construction a Grothendieck ω-groupoid. Like van den
Berg and Garner, Bourke uses the so-called identity type categories as models
of type theory. These categories in particular form a weak factorisation
system.

The notion of a path category was first introduced by van den Berg and
Moerdijk [3] as a strengthening of Brown’s category of fibrant objects. As
shown by van den Berg [1], path categories are models for Martin-Löf type
theories with a weakened version of the computation rule for the identity
type, where definitional equality is replaced by propositional equality. Since
all equalities in a weak ω-groupoid hold up to a higher homotopy, it is rea-
sonable to expect that objects in path categories will carry a Grothendieck
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weak ω-groupoid structure akin to the one in identity type categories. The
aim here is to pave the way for showing this.

Our strategy is to adapt the proof by Bourke [4] from the context of iden-
tity type categories to path categories. The proof does not straightforwardly
carry over to our context, since the lifting property of a weak factorisation
system, which is exploited by Bourke’s proof, does not hold in path cate-
gories. A weaker property, however, does hold. Namely, as shown by van
den Berg and Moerdijk [3], a commutative square whose left side is a weak
equivalence and right side a fibration does indeed have a diagonal filler, but
only in the sense that the upper triangle commutes up to a fiberwise homo-
topy, while the lower one still commutes strictly (see Theorem 7).

2 Path categories

Definition 1. [Path category] Let C be a category, and suppose we have
chosen two subclasses of maps of C, denoted by F and W. Maps in F are
called fibrations; and the maps in W are called weak equivalences. Further,
the maps that are both in F and W are called acyclic fibrations and their
class is denoted by A. We say that the triple (C,F,W) is a path category if
the following conditions are satisfied.

(1) Fibrations F are closed under composition.

(2) The category C has all pullbacks of fibrations along arbitrary maps, and
a pullback of a fibration is itself a fibration.

(3) The category C has a terminal object 1, and for any object X the unique
map X → 1 is a fibration.

(4) Weak equivalences satisfy 2-out-of-6, that is, if

A
f−→ B

g−→ C
h−→ D

are maps such that gf, hg ∈W, then also f, g, h, hgf ∈W.

(5) Every isomorphism is an acyclic fibration.

(6) Every acyclic fibration has a section.

(7) A pullback of an acyclic fibration is itself an acyclic fibration.
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(8) For every object X ∈ C there is (at least one) object PX ∈ C such that
the diagonal ∆ : X → X × X factors through PX as ∆ = pr, where
r ∈W and p ∈ F. Such PX is called a path object of X.

X X ×X∆ //

PX

r

��

p

CC

Remarks.

1. We will usually refer to a path category just as C, leaving fibrations
and weak equivalences implicit.

2. We often denote the map p in condition 8 by its components, p = (s, t).

3. Note that the class of isomorphisms in any category satisfies the con-
dition 4.

4. Conditions 2 and 3 imply that C has all finite products, so that the
statement of condition 8 is meaningful.

5. Acyclic fibration are sometimes called trivial fibrations.

Definition 2. [Homotopy, homotopic maps] Let C be a path category, and
suppose f, g : Y → X are parallel maps. We say that f and g are homotopic if
there is a path object PX with fibration (s, t) : PX → X × X and a map
h : Y → PX (called a homotopy) such that sh = f and th = g. In this case
we write f ' g, or h : f ' g to emphasise the choice of homotopy.

It can be shown that the homotopy relation is independent of the choice
of the path object and that it is in fact an equivalence relation on Hom(Y,X)
(see van den Berg and Moerdijk [3, pp. 3142-3145]). Moreover, the homotopy
relation is a congruence in the following sense.

Theorem 3 (Theorem 2.14 in van den Berg and Moerdijk [3]). If f and g
are parallel maps, then f ' g implies fk ' gk and lf ' lg for any maps k
and l for which this composition makes sense.
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While condition 8 only requires that the diagonals factor as a weak equiv-
alence followed by a fibration, the following may be shown for any path
category.

Proposition 4 (Proposition 2.3 in van den Berg and Moerdijk [3]). Any
morphism f : Y → X in a path category factors as f = pfwf , where pf ∈ F
and wf is a section of an acyclic fibration (and hence wf ∈W).

We may use this fact to define fiberwise path objects, which are in turn
used to define fiberwise homotopies.

Definition 5 (Fiberwise path object). Let p : B → A be a fibration, and
denote the pullback of p along itself by B×AB. Then the fiberwise diagonal
∆A = (idB, idB) factors as a weak equivalence followed by a fibration

B
r−→ PAB

(s,t)−−→ B ×A B

through some object PAB. Any such PAB is called a fiberwise path object for
B with respect to p.

Definition 6 (Fiberwise homotopy). Let C be a path category, and suppose
f, g : Y → X are parallel maps. Further suppose that there is a fibration
p : X → I such that pf = pg. We say that f and g are fiberwise homotopic
with respect to p if there is a fiberwise path object PIX with fibration (s, t) :
PIX → X ×I X and a map h : Y → PIX (called a fiberwise homotopy) such
that sh = f and th = g. In this case we write f 'I g, or h : f 'I g.

Fibrations and weak equivalences admit the following lifting property.

Theorem 7 (Theorem 2.38 in van den Berg and Moerdijk [3]). In a path
category, suppose that we have a commutative square

D C
g //

B

w

��
A

f //

p

��

with w ∈W and p ∈ F. Then there is a map l : B → C such that pl = f and
lw 'A g. Such a map is unique up to a fiberwise homotopy with respect to p.
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3 Homotopy coslices

After constructing an iterated path object for an object X in an identity type
category (as we shall do in Section 5), Bourke uses the coslice category with
X as its apex to factor the iterated path object through it. This allows one to
construct a globular theory which both has globular products of the required
shape and is contractible (see sections 4 and 6). We could, in principle, do the
same. However, the resulting globular theory would fail to be contractible,
as a path category is not a weak factorisation system: the closest analogous
lifting property we have is Theorem 7. Crucially, the upper triangle there
does not commute strictly, and hence the resulting lifting is not a morphism
in the strict coslise category as in Bourke’s proof. This suggests a weakening
to the category we use: the morphisms should commute up to a (fiberwise)
homotopy. Here we define two candidate homotopy coslice categories for this.

Definition 8 (Homotopy coslice category). Let C be a path category and let
A ∈ C. The homotopy coslice category A � C has as its objects equivalence
classes of maps A → B in C under the homotopy relation, and a map from
[n] : A → B to [m] : A → C is a morphism k : B → C such that kn ' m.
Identities in A � C are simply the identities in C, and composition is defined
by pasting the triangles (that commute up to a homotopy).

Remark 9. Composition in a homotopy coslice category is well-defined due
to Theorem 3. By a slight abuse of notation, we will almost exclusively refer
to the objects of a homotopy coslice category by a representative from the
equivalence class rather than by the entire class.

We will denote by U : A�C → C the forgetful functor from the homotopy
coslice category to the base path category; it sends each object [n] : A→ B
to B and each morphism to itself (forgetting the commutativity condition).

Definition 10 (Fiberwise homotopy coslice category). Let C be a path cat-
egory and let X ∈ C. An object in the fiberwise homotopy coslice category
X �f C consists of a fibration p : A → B in C and an equivalence class of
maps X → A under the fiberwise homotopy relation with respect to p. A
morphism from (pi : Ai → Bi, fi : X → Ai) to (pj : Aj → Bj, fj : X → Aj)
is a pair of maps (aij : Ai → Aj, bij : Bi → Bj) such that pjaijfi = pjfj, and
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in the diagram
X

fi

��

fj

%%
Ai Aj

aij //

Bi

pi

��
Bj

bij //

pj

��

the triangle commutes up to a fiberwise homotopy with respect to pj and the
square commutes strictly. Composition is defined by pasting the triangles
and squares.

Remark 11. Composition in a fiberwise homotopy coslice category is well-
defined. For let (aij : Ai → Aj, bij : Bi → Bj) and (ajk : Aj → Ak, bjk : Bj →
Bk) be morphisms. Then it is immediate that the rectangle in

X

fi

��
fj

""
Ai Ajaij

//

Bi

pi

��
Bj

bij //

pj

��

Ak

fk

''
ajk

//

Bk

pk

��bjk //

commutes and that pkajkaijfi = pkfk. It remains to show ajkaijfi 'pk fk.
Let PjAj and PkAk be fiberwise path objects for Aj and Ak and let hj : X →
PjAj and hk : X → PkAk the homotopies so that sjhj = aijfi, tjhj = fj,
skhk = ajkfj and tkhk = fk. We then have the following diagram

Aj Ak
ajk //

PjAj
��

Aj ×pj Aj
(sj ,tj) //

∆pj

''

PkAk//

Ak ×pk Ak

(sk,tk)

��(ajkπ
1
j ,ajkπ

2
j )

//

∆pk

))
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where the triangles factorise the diagonals with a weak equivalence followed
by a fibration and hence commute, while the middle parallelogram commutes
by construction. Since the leftmost map is a weak equivalence and the right-
most one a fibration, the diagram has a diagonal lifting α : PjAj → PkAk
making the lower triangle commute. It follows that

tkαhj = ajkthj = ajkfj

and
skαhj = ajkaijfi,

whence
ajkaijfi 'pk ajkfj 'pk fk.

Proposition 12. Let n : A→ N , m : A→ M and k : A→ K be objects in
a homotopy coslice category A � C, and suppose f : n → k and g : m → k
are morphisms such that g is an acyclic fibration (in C). Then the pullback
of f and g exists in A � C and is mapped to the pullback of f and g in C by
U . (In short: A� C has pullbacks of acyclic fibrations, and these are created
by U .)

Proof. We have the pullback

N ×K M M
p2 //

K

g

��

g̃

\\

N

p1

��

p̃1

\\

f //

where p1 is also an acyclic fibration by (7) of Definition 1. We have denoted
the sections of g and p1 by g̃ and p̃1. Since both fn ' k and gm ' k, we
have fn ' gm. Now define p := p̃1n. This turns the maps p1 and p2 into
maps in A � C. Indeed, p1p = n, and

gp2p = fp1p̃1n = fn ' gm,

whence p2p ' m, as by Theorem 2.16 of van den Berg and Moerdijk [3] any
section of a weak equivalence is a homotopy inverse. By the same theorem,
and since homotopy inverses are unique up to a homotopy, this is the unique
way to lift p1 and p2 to A � C.

The only thing that remains to be checked is that the unique morphism
into N ×K M induced by the universal property of the pullback in C is also
a morphism in A � C, which once more follows from the fact that p1 has a
homotopy inverse.
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4 Globular theories and weak ω-groupoids

This section is based on Section 2 of Bourke [4].

Definition 13. The category of globes G is the category freely generated by
the graph

0 1
σ0 //

τ0
// · · ·

σ1 //

τ1
// n

σn−1 //

τn−1

// · · ·
σn //

τn
// ,

subject to the equations

σn+1 ◦ σn = τn+1 ◦ σn
τn+1 ◦ τn = σn+1 ◦ τn

for all n ∈ N. Here ‘freely generated’ means we add an identity for every
object and add as morphisms all the (formal) compositions, after which we
quotient the class of morphisms by the identity and associativity relations as
well as by the identities above.

Note that the equations in the definition of the category of globes imply
that each homset G(n,m) contains exactly two elements whenever n < m.
Namely, G(n,m) = {σn,m, τn,m}, where we abbreviate

σn,m := σm−1 ◦ · · · ◦ σn

and similarly for τn,m. If the domain and codomain of σn,m and τn,m are clear
from the context, we will simply write σ and τ .

If C is some category, we call a functor A : Gop → C an ω-graph or a
globular object in C. We write sn := A(σn) and tn := A(τn), and similarly
sn,m := A(σn,m) and tn,m := A(τn,m), which we abbreviate by s and t if the
context is clear.

A table of dimensions is a finite sequence of natural numbers n̄ = (n1, . . . , nk)
where k is odd and n2i−1 > n2i < n2i+1 for all i = 1, . . . , k−1

2
. That is, the

sequence has an odd number of elements, and all numbers at even positions
are strictly less than their immediate neighbours. Each table of dimensions n̄
determines a subcategory Gn̄ of G consisting of those objects which appear
in n̄, while Gn̄(n2i, n2i−1) := {τ} and Gn̄(n2i, n2i+1) := {σ} for all i. The
category Gn̄ contains no other non-identity morphisms. Hence Gn̄ looks like:

n1

n2

��
τ

n3
��
σ

n4

��
τ

n5
��
σ · · ·

nk−2

nk−1

��
τ

nk
��
σ

.
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Definition 14. [Globular sum] Let C be a category and D : G→ C a functor.
Then each table of dimensions n̄ determines a diagram Dn̄ : Gn̄ → C by
restriction of D to Gn̄. The colimit of Dn̄ (if exists) is called a D-globular
sum (or just a globular sum) and is denoted by D(n̄). If such a colimit exists
for every table of dimensions n̄, we say that C has all (D-)globular sums.

Dualising Definition 14, we obtain the definition of a globular product.
Explicitly, for a globular object A : Gop → C and a table of dimensions n̄,
the limit of the diagram An̄ : (Gop)n̄ → C, if it exists, is called an (A-)globular
product and is denoted by A(n̄).

Let y : G → [Gop,Set] be the Yoneda embedding. Being a presheaf
category, [Gop,Set] is cocomplete and hence has all y-globular sums. Hence
we may define the category Θ0 as follows. The objects of Θ0 are tables of
dimensions, and

Θ0(n̄, m̄) := [Gop,Set](y(n̄), y(m̄)).

Proposition 15. The category Θ0 is equivalent to the full subcategory of
[Gop,Set] whose objects are y-globular sums.

Proof. Given n̄ ∈ Θ0, define ι(n̄) := y(n̄) and let ι be identity on morphisms.
This assignment is functorial, and F is full and faithful by definition. It is
also essentially surjective on objects (in fact surjective), as every globular
sum arises from a table of dimensions.

Observe that the Yoneda embedding factors via Θ0 as follows

G [Gop,Set]
y //

Θ0

D

��
ι

77
,

where ι is as defined in the proof of Proposition 15, and D : G→ Θ0 is given
by Dn := (n) on objects and by

D(n
f−→ m) := y(n)

f◦−−−→ y(m)

on morphisms. In fact the (dual of the) map D has a universal property as
expressed in the following lemma. This is Lemma 2.1 in [4], where it is stated
without a proof.
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Lemma 16. Let A : Gop → C be a globular object in C and suppose that
C has all A-globular products. Then there is an essentially unique, globular
product preserving extension A(−) : Θop

0 → C such that the diagram

Gop CA //

Θop
0

Dop

�� A(−)

77

commutes. On objects this extension is given by n̄ 7→ A(n̄).

Definition 17. A globular theory consists of

• a category T with Ob(T) = Ob(Θ0),

• a globular product preserving functor J : Θop
0 → T which is identity on

objects.

We shall write Mod(T, C) for the full subcategory of the functor category
[T, C] containing the globular product preserving functors, and call it the
category of T-algebras in C. We then have a forgetful functor

U : Mod(T, C)→ [Gop, C]

given by X 7→ X ◦ J ◦ Dop on objects. If X ∈ Mod(T, C) is such that
U(X) = A for some globular object A, we say that X is a T-algebra structure
on A.

Definition 18. Let A : Gop → C be a globular object and let X ∈ C. Then

f, g : X ⇒ A(n)

is a parallel pair of n-cells in A if either n = 0, or sn−1f = sn−1g and
tn−1f = tn−1g.

Definition 19. A lifting for a parallel pair of n-cells f, g : X ⇒ A(n) is a
map h : X → A(n+ 1) such that the diagram

X A(n)
f //

g
//

A(n+ 1)

h
;;

sn

��
tn
��

commutes serially, that is, we have snh = f and tnh = g.
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Definition 20. A globular object A : Gop → C is contractible if every parallel
pair of n-cells in A has a lifting, for all n ∈ N.

We say that a globular theory J : Θop
0 → T is contractible if its underlying

globular object
J ◦Dop : Gop → T

is contractible.

Definition 21. A Grothendieck weak ω-groupoid is a T-algebra for some
contractible globular theory J : Θop

0 → T.

4.1 Endomorphism theories

Let A : Gop → C be a globular object and suppose C has all A-globular
products. Let A(−) : Θop

0 → C be the extension as in Lemma 16. We
then define the category End(A) by letting Ob(End(A)) := Ob(Θ0) and
End(A)(n̄, m̄) := C(A(n̄), A(m̄)). Now A(−) factors via End(A) as follows:

Gop CA //

Θop
0

Dop

�� A(−)

77

End(A)
JA

//

KA

OO

where JA is identity on objects and maps f : n̄→ m̄ to Af , and KA assigns
n̄ → A(n̄) and is identity on morphisms. Since A(−) preserves globular
products, so do JA and KA. Thus JA : Θop

0 → End(A) is a globular theory.
Moreover, we have KA ◦ JA ◦ Dop = A, so that KA is a End(A)-algebra
structure on A.

The following observation will be used to construct a weak ω-groupoid in
path categories.

Lemma 22. Let A : Gop → C be a globular object and suppose C has all
globular products. Then JA : Θop

0 → End(A) is contractible if and only if
each parallel pair of m-cells f, g : A(n̄) ⇒ A(m) whose domain is a globular
product has a lifting for all m ∈ N.

Proof. The theory JA is contractible if and only if the globular object JA ◦
Dop → End(A) is contractible, that is, if and only if every parallel pair of
m-cells in JA ◦ Dop has a lifting for all m ∈ N. Since KA is identity on
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morphisms and surjective on globular products, this is equivalent to: every
parallel pair of m-cells in A whose domain is a globular product has a lifting
for all m ∈ N, which is as claimed.

In particular, if JA is contractible, then KA is a Grothendieck weak ω-
groupoid.

5 The iterated path object

From now on and until the end of the paper, let C be some path category
and X a fixed object in C. Here we will inductively define a particular
globular object X∗ : Gop → C by using the structure of a path category. In
Section 6 it will be shown than there is a contractible globular theory whose
underlying globular object is X∗. During the induction, it will be useful to
define a collection of objects Bn+1X∗ in C, known as the (n+ 1)-boundary of
an (inductively defined) n-graph.

We first define X∗(0) := X and B1X∗ := X∗(0)×X∗(0). Next, we define
X∗(1) := PX as a path object of X, that is, we have a factorisation of the
diagonal:

X∗(0) X∗(1)
r0 // B1X∗

(s0,t0) //

with r0 ∈ W and p0 := (s0, t0) ∈ F. Thus we may define X∗σ0 := s0 and
X∗τ0 := t0.

Now suppose that X∗ and BnX∗ as well as fibrations pn−1 : X∗(n) →
BnX∗ are all defined up to some n ≥ 1. For X∗ this means that it is defined
up to n on objects and up to n− 1 on morphisms. We define Bn+1X∗ as the
pullback:

Bn+1X∗ X∗(n)
kn //

X∗(n)

qn

��
BnX∗.pn−1

//
��
pn−1

(23)

Since pn−1 is a fibration, so are qn and kn.
Let X∗(n+ 1) be a fiberwise path object for X∗(n) with respect to pn−1,

that is, the fiberwise diagonal ∆pn−1 : X∗(n)→ Bn+1X∗ factors as

X∗(n) X∗(n+ 1)
rn // Bn+1X∗

(sn,tn) //
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with rn ∈W and pn := (sn, tn) ∈ F. As for the base case, we define X∗σn :=
sn and X∗τn := tn. This completes the construction of X∗. Note that sn =
qnpn and tn = knpn, so that both sn and tn are fibrations. On the other hand,
snrn = tnrn = idX∗(n), and since rn is a weak equivalence, so are sn and tn.
Thus we have sn, tn ∈ A.

Lemma 24. The assignment X∗ : Gop → C as defined above is functorial
and hence defines a globular object in C.

Proof. Defining the action of X∗ on identities as is necessary, the only thing
we have to check is that X∗ preserves the equations in Definition 13. That
is, we need to show that

snsn+1 = sntn+1

tntn+1 = tnsn+1.

For n ≥ 1, we have

snsn+1 = qnpnqn+1pn+1 = qnpnkn+1pn+1 = sntn+1,

where in the middle equality we used commutativity of the square in (23).
The case n = 0 is almost identical, we just use π0 instead of q0. The second
equality follows similarly.

Any X∗ so constructed is called an iterated path object of X.

6 The weak ω-groupoid structure

We are now ready to state our conjecture.

Conjecture 25. Let X be an object in a path category C and X∗ : Gop → C
an iterated path object. Then there is a contractible globular theory T and a
Grothendieck weak ω-groupoid which is a T-algebra structure on X∗.

Before discussing the possible proof strategies, we introduce some nota-
tion. In Section 5, we defined weak equivalences rn : X∗(n) → X∗(n + 1),
whose compositions we denote by rn,m : X∗(n)→ X∗(m) for n < m, and we
set rn,n = idX∗(n), dropping the subscripts when the domain and codomain
are clear. For the case n = 0, we shall write r0

m := r0,m : X∗(0)→ X∗(m) for
m ≥ 0.
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Observe that for m > n we have

sr0
m = sn · · · smrm · · · r0

= sn · · · sm−1rm−1 · · · r0

· · ·
= rn · · · r0

= r0
n,

and similarly tr0
m = r0

n. This exhibits the maps r0
m as a cone on X∗ with

apex X∗(0). We use this to factor X∗ as follows:

Gop X∗(0) � CR //

C
X∗

''

U

��

where X∗(0) � C is the homotopy coslice category, U is the forgetful functor,
while R is defined by n 7→ r0

n on objects and by f 7→ X∗(f) on morphisms.
Bourke proves the result stated in the beginning of the section for identity

type categories by showing two things:

(1) the category X∗(0) � C has R-globular products, and moreover U pre-
serves globular products,

(2) the endomorphism theory JR : Θop
0 → End(R) is contractible.

This would indeed be sufficient, as then End(R) will be the desired globular
theory, and the composite map

End(R)
KR−−→ X∗(0) � C U−→ C

will be an End(R)-algebra structure on X∗, hence the desired weak ω-
groupoid. In the current setting, we are able to prove the first statement.

Lemma 26. The category X∗(0)�C has R-globular products, and U preserves
globular products.

Proof. We need to show that the diagram Rn̄ : (Gop)n̄ → X∗(0) � C has a
limit for every table of dimensions n̄ = (n1, . . . , nk). We proceed by induction
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on the length k of the table of dimensions. For the base case k = 1, we have
R(n̄) = r0

n1
, and the projection is the identity.

Now suppose that Rn̄ has a limit R(n̄) = X∗(0)
rn̄−→ X∗(n̄) with pro-

jections πn̄i : X∗(n̄) → X∗(ni) for some odd k ≥ 1. We extend the table
of dimensions to n̄+ := (n1, . . . , nk, nk+1, nk+2), so that the diagram Rn̄ is
extended to Rn̄+

by adding the maps

X∗(nk)

X∗(nk+1)

t
��

X∗(nk+2)

s

��

where we have omitted the maps out of X∗(0) for clarity. We define X∗(n̄
+)

as the pullback

X∗(n̄
+) X∗(nk+2)

πn̄+

k+2 //

X∗(nk+1)

s

��
X∗(n̄)

q

��
X∗(nk)

πn̄
k // t //

(27)

and the remaining projections as πn̄
+

i := πn̄i q for i ≤ k and

πn̄
+

k+1 := tπn̄k q = sπn̄
+

k+2.

Since s ∈ A, Proposition 12 yields there is a map rn̄+ : X∗(0) → X∗(n̄
+),

unique up to a homotopy, making X∗(n̄
+) a pullback in X∗(0) � C. This

construction verifies the universal property of the limit of Rn̄+
, which follows

immediately by noting that any cone on Rn̄+
is by restriction also a cone on

Rn̄. Thus this completes the induction.
Since R-globular products were constructed as limits in C, the forgetful

functor U preserves them.

Note that each map rn̄ : X∗(0) → X∗(n̄) is a weak equivalence (more
precisely the equivalence class of maps consists of weak equivalences). This
follows by a simple induction: in the base case rn̄ = r0

n1
is a weak equivalence;

while in the inductive step rn̄+ = q̃rn̄, where q̃ is the section of q in (27)
and hence a weak equivalence, and rn̄ is a weak equivalence by induction
hypothesis.
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To show that the analogue of JR is contractible (statement (2)), Bourke
uses Lemma 22. This is where we face a problem induced by the fact that
in the construction of X∗ we use the fiberwise path objects. We would have
to show that for all m ∈ N, any parallel pair of m-cells in R whose domain
is a globular product has a lifting. Let f, g be such a pair as in the diagram
below.

X∗(0)

X∗(n̄)

rn̄

��

X∗(m+ 1)
r0
m+1 //

h
//

X∗(m)

r0
m

##f //

g
//

t

��

s

��

Since f and g are maps between objects in the homotopy coslice category, we
have frn̄ ' r0

m ' grn̄. In order to conclude we would wish for a homotopy
h : X∗(0) → X∗(m + 1) such that sh = frn̄ and th = grn̄. This, however,
does not follow from the given conditions (apart from the case m = 0), as
the maps frn̄ and frn̄ are merely homotopic, not fiberwise homotopic.

This impasse does not imply, of course, that JR is not contractible, but
merely means we cannot copy Bourke’s proof strategy directly. Given this
difficulty, however, it is worthwhile investigating other ways of factoring X∗.
One such option is to replace X∗(0) � C with the fiberwise homotopy coslice
category X∗(0)�f C from Definition 10. This, however, leads to complications
with both globular products and contractibility.
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