
Categorical embeddings of effect algebras

Leo Lobski
University College London
leo.lobski.21@ucl.ac.uk

21 March 2022
University of East Anglia Pure Maths Seminar

1 / 18



Outline

The structure of a measurement in quantum mechanics

Effect algebras

Finite Boolean algebras are dense in effect algebras

Partitions of unity

2 / 18



The structure of a measurement in quantum mechanics
(theorist’s perspective)
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The structure of a measurement in quantum mechanics
(theorist’s perspective)

I A system is modelled by a Hilbert space

I We have access to the system via measurements only
I A finite positive operator valued measure is a finite set
{Ai}i∈I of positive semi-definite self-adjoint operators
such that ∑

i∈I
Ai = I .

I Philosophical problem: is the information contained in the
measurements sufficient to know the system?

I Operational quantum mechanics: replace the Hilbert space
with the set of effects: physical outcomes which may actually
occur
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Effect algebras

Definition
An effect algebra is a partial algebra (E , 0, 1,′ ,⊥,⊕) such that the
following hold for all a, b, c ∈ E :

(E1) if a ⊥ b, then b ⊥ a and a⊕ b = b ⊕ a,
(E2) if a ⊥ b and (a ⊕ b) ⊥ c , then b ⊥ c and a ⊥ (b ⊕ c) as well

as
(a⊕ b)⊕ c = a⊕ (b ⊕ c),

(E3) a ⊥ a′ and a ⊕ a′ = 1, and if a ⊥ b such that a ⊕ b = 1, then
b = a′,

(E4) if a ⊥ 1, then a = 0.
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Examples

effect algebras

Boolean algebras MV-algebras σ-algebras

orthomodular posets/lattices Hilbert space effects

CLASSICAL

BINARY

QUANTUM

PROBABILISTIC
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Goal for today

FinBA is dense in EAlg
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Dense subcategories

Definition
Let A be a small, full subcategory of a category C.

For an object
C ∈ C, the canonical diagram of C with respect to A is the
forgetful functor

D : A/C −→ C.

We say that C is a canonical colimit of A-objects if the canonical
diagram has a colimit with vertex C and coprojections

D
(
A

f−→ C
)

f−→ C ,

where f : A→ C ranges through the objects of A/C .

Definition
A small, full subcategory A of a category C is dense if every object
of C is a canonical colimit of A-objects.
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The nerve functor

Definition
Let A be a small, full subcategory of a category C. The nerve
functor

NA : C → [Aop,Set]

is defined by restriction of the Yoneda embedding
y : C → [Cop,Set].

Proposition
Let A be a small, full subcategory of a category C. Then A is
dense if and only if the nerve functor NA is full and faithful.
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The test functor
Definition
Let E be an effect algebra and let n ∈ N. An n-test is a list of
elements of E of length n

(e1, . . . , en)

such that their sum
⊕n

i=1 ei exists and is equal to 1.

We use this to define a functor for each effect algebra E :

T (E ) : N→ Set
n 7→ T (E )(n)(

n
f−→ m

)
7→ (T (E )(n)→ T (E )(m))

(e1, . . . , en) 7→

 ⊕
i∈f −1(j)

ei


j=1,...,m
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The test functor

This further lifts to the test functor:

T : EAlg→ [N,Set]
E 7→ T (E )

(α : E → F ) 7→ T (α),

where T (α) : T (E )→ T (F ) is the natural transformation with
components

T (α)n : T (E )(n)→ T (F )(n)

(e1, . . . , en) 7→ (α(e1), . . . , α(en)).

Theorem (Staton and Uijlen 2015)
The test functor T : EAlg→ [N,Set] is full and faithful.
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The test is the nerve (up to...)

We have an equivalence of categories:

− ◦ Pop : [FinBAop,Set]→ [N,Set].

Proposition
The test functor T : EAlg→ [N,Set] is naturally isomorphic to the
nerve functor composed with the above equivalence:

NFinBA(−) ◦ Pop : EAlg→ [N,Set].

Corollary
The category FinBA is a dense subcategory of EAlg.
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Partitions of unity

Let E be an effect algebra. A multiset (A, η) such that A ⊆ E is
summable if the sum

⊕
a∈A

η(a) · a

exists (if it exists it is well-defined).

Definition
Let E be an effect algebra. A multiset (A, η) such that A ⊆ E is a
partition of unity if it is summable, 0 /∈ A, and⊕

a∈A
η(a) · a = 1.
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Partitions of unity

I Part(E ) is partially ordered “by refinement”:

I P ≤ Q if P can be partitioned into |Q| parts such that
the sum of each such part is a unique (up to the
multiplicity) element of Q.

I Partitions of unity are in one-to-one correspondence with
images of discrete positive operator valued measures
(POVMs).
I The refinement order corresponds to coarse-graining.
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The partitions of unity functor

I Partitions of unity extend to a functor Part : EAlg→ Pos.

Definition
Let F : C → D be a functor, and let C be an isomorphism-closed
subclass of objects of C. We say that F is essentially injective on
C-objects if for any objects C ,B ∈ C, having F (C ) ' F (B) implies
C ' B .

Conjecture
The functor

Part : EAlg→ Pos

is essentially injective on effect algebras which do not have minimal
partitions of unity of cardinality 2 or less.
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Conclusion

I Effect algebras are a natural generalisation of Boolean
algebras, that give models for binary, probabilistic, classical
and quantum reasoning.

I As a byproduct, we have formulated Bohr’s doctrine in terms
of effect algebras and category theory.

I Open problem 1: Characterise those functors [N,Set] which
correspond to an effect algebra.

I Open problem 2: Show that not just tests but also partitions of
unity have enough information to reconstruct an effect algebra.
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Thank you for your attention!
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