Categorical embeddings of effect algebras

Leo Lobski University College London leo.lobski.21@ucl.ac.uk

21 March 2022 University of East Anglia Pure Maths Seminar

[The structure of a measurement in quantum mechanics](#page-2-0)

[Effect algebras](#page-10-0)

[Finite Boolean algebras are dense in effect algebras](#page-16-0)

[Partitions of unity](#page-33-0)

 \triangleright A system is modelled by a Hilbert space

- \triangleright A system is modelled by a Hilbert space
- \triangleright We have access to the system via measurements only

- \blacktriangleright A system is modelled by a Hilbert space
- \triangleright We have access to the system via measurements only
	- \triangleright A finite *positive operator valued measure* is a finite set ${A_i}_{i \in I}$ of positive semi-definite self-adjoint operators such that

$$
\sum_{i\in I}A_i=I.
$$

- \triangleright A system is modelled by a Hilbert space
- \triangleright We have access to the system via measurements only
	- \triangleright A finite *positive operator valued measure* is a finite set ${A_i}_{i \in I}$ of positive semi-definite self-adjoint operators such that

$$
\sum_{i\in I}A_i=I.
$$

 \blacktriangleright Philosophical problem: is the information contained in the measurements sufficient to know the system?

- \triangleright A system is modelled by a Hilbert space
- \triangleright We have access to the system via measurements only
	- \triangleright A finite *positive operator valued measure* is a finite set ${A_i}_{i \in I}$ of positive semi-definite self-adjoint operators such that

$$
\sum_{i\in I}A_i=I.
$$

- \blacktriangleright Philosophical problem: is the information contained in the measurements sufficient to know the system?
- \triangleright Operational quantum mechanics: replace the Hilbert space with the set of *effects*: physical outcomes which may actually occur

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

(E1) if $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$,

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

(E1) if $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$,

(E2) if $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp c$ and $a \perp (b \oplus c)$ as well as

$$
(a \oplus b) \oplus c = a \oplus (b \oplus c),
$$

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

\n- (E1) if
$$
a \perp b
$$
, then $b \perp a$ and $a \oplus b = b \oplus a$,
\n- (E2) if $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp c$ and $a \perp (b \oplus c)$ as well as
\n

$$
(a \oplus b) \oplus c = a \oplus (b \oplus c),
$$

(E3) $a \perp a'$ and $a \oplus a' = 1$, and if $a \perp b$ such that $a \oplus b = 1$, then $b = a'$,

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

\n- (E1) if
$$
a \perp b
$$
, then $b \perp a$ and $a \oplus b = b \oplus a$,
\n- (E2) if $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp c$ and $a \perp (b \oplus c)$ as well as
\n

$$
(a \oplus b) \oplus c = a \oplus (b \oplus c),
$$

(E3) $a \perp a'$ and $a \oplus a' = 1$, and if $a \perp b$ such that $a \oplus b = 1$, then $b = a'$, (E4) if $a \perp 1$, then $a = 0$.

Examples

CLASSICAL

QUANTUM

Goal for today

FinBA is dense in EAlg

Definition Let A be a small, full subcategory of a category C .

Definition

Let A be a small, full subcategory of a category C . For an object $C \in \mathcal{C}$, the canonical diagram of C with respect to A is the forgetful functor

$$
D: \mathcal{A}/C \longrightarrow \mathcal{C}.
$$

Definition

Let A be a small, full subcategory of a category C . For an object $C \in \mathcal{C}$, the canonical diagram of C with respect to A is the forgetful functor

$$
D: \mathcal{A}/C \longrightarrow \mathcal{C}.
$$

We say that C is a canonical colimit of A -objects if the canonical diagram has a colimit with vertex C and coprojections

$$
D\left(A\stackrel{f}{\rightarrow}C\right)\stackrel{f}{\rightarrow}C,
$$

where $f : A \rightarrow C$ ranges through the objects of A/C .

Definition

Let A be a small, full subcategory of a category C . For an object $C \in \mathcal{C}$, the canonical diagram of C with respect to A is the forgetful functor

$$
D: \mathcal{A}/C \longrightarrow \mathcal{C}.
$$

We say that C is a canonical colimit of A -objects if the canonical diagram has a colimit with vertex C and coprojections

$$
D\left(A\stackrel{f}{\to}C\right)\stackrel{f}{\to}C,
$$

where $f : A \rightarrow C$ ranges through the objects of A/C .

Definition

A small, full subcategory A of a category C is dense if every object of $\mathcal C$ is a canonical colimit of $\mathcal A$ -objects.

The nerve functor

Definition

Let A be a small, full subcategory of a category C . The nerve functor

 $N_\mathcal{A}:\mathcal{C}\to[\mathcal{A}^{op},\mathsf{Set}]$

The nerve functor

Definition

Let A be a small, full subcategory of a category C . The nerve functor

$$
\mathsf{N}_{\mathcal{A}}:\mathcal{C}\rightarrow[\mathcal{A}^{op},\mathsf{Set}]
$$

is defined by restriction of the Yoneda embedding $y: C \to [C^{op}, \mathsf{Set}]$.

The nerve functor

Definition

Let A be a small, full subcategory of a category \mathcal{C} . The nerve functor

 $N_\mathcal{A}:\mathcal{C}\to[\mathcal{A}^{op},\mathsf{Set}]$

is defined by restriction of the Yoneda embedding $y: C \to [C^{op}, \mathsf{Set}]$.

Proposition

Let A be a small, full subcategory of a category C . Then A is dense if and only if the nerve functor N_A is full and faithful.

Definition

Let E be an effect algebra and let $n \in \mathbb{N}$. An *n-test* is a list of elements of E of length n

```
(e_1, \ldots, e_n)
```
such that their sum $\bigoplus_{i=1}^n e_i$ exists and is equal to 1.

Definition

Let E be an effect algebra and let $n \in \mathbb{N}$. An *n-test* is a list of elements of E of length n

 (e_1, \ldots, e_n)

such that their sum $\bigoplus_{i=1}^n e_i$ exists and is equal to 1. We use this to define a functor for each effect algebra E :

Definition

Let E be an effect algebra and let $n \in \mathbb{N}$. An *n-test* is a list of elements of E of length n

$$
(e_1,\ldots,e_n)
$$

such that their sum $\bigoplus_{i=1}^n e_i$ exists and is equal to 1. We use this to define a functor for each effect algebra E:

$$
T(E): \mathbb{N} \to \mathsf{Set}
$$

\n
$$
n \mapsto T(E)(n)
$$

\n
$$
\left(n \xrightarrow{f} m\right) \mapsto (T(E)(n) \to T(E)(m))
$$

\n
$$
(e_1, \ldots, e_n) \mapsto \left(\bigoplus_{i \in f^{-1}(j)} e_i\right)_{j=1,\ldots,m}
$$

This further lifts to the test functor:

$$
\begin{aligned} \mathcal{T} : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}] \\ E &\mapsto \mathcal{T}(E) \\ (\alpha : E \to F) &\mapsto \mathcal{T}(\alpha), \end{aligned}
$$

This further lifts to the test functor:

$$
\begin{aligned} \mathcal{T} : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}] \\ E &\mapsto \mathcal{T}(E) \\ (\alpha : E \to F) &\mapsto \mathcal{T}(\alpha), \end{aligned}
$$

where $T(\alpha)$: $T(E) \rightarrow T(F)$ is the natural transformation with components

$$
\begin{aligned} T(\alpha)_n: \, T(E)(n) &\rightarrow T(F)(n) \\ &\quad (e_1, \ldots, e_n) &\mapsto (\alpha(e_1), \ldots, \alpha(e_n)). \end{aligned}
$$

This further lifts to the test functor:

$$
\begin{aligned} \mathcal{T} : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}] \\ E &\mapsto \mathcal{T}(E) \\ (\alpha : E \to F) &\mapsto \mathcal{T}(\alpha), \end{aligned}
$$

where $T(\alpha)$: $T(E) \rightarrow T(F)$ is the natural transformation with components

$$
\begin{aligned} T(\alpha)_n: \, T(E)(n) &\rightarrow T(F)(n) \\ (e_1, \ldots, e_n) &\mapsto (\alpha(e_1), \ldots, \alpha(e_n)). \end{aligned}
$$

Theorem (Staton and Uijlen 2015) The test functor $T : EAlg \rightarrow [N, Set]$ is full and faithful. The test is the nerve (up to...)

We have an equivalence of categories:

```
- \circ \mathcal{P}^{op} : [FinBA^{op}, Set] \to [\mathbb{N}, Set].
```
The test is the nerve (up to...)

We have an equivalence of categories:

```
- \circ \mathcal{P}^{op} : [FinBA^{op}, Set] \to [\mathbb{N}, Set].
```
Proposition

The test functor $T : EAlg \rightarrow [N, Set]$ is naturally isomorphic to the nerve functor composed with the above equivalence:

$$
\textit{N}_{\text{FinBA}}(-)\circ\mathcal{P}^\textit{op}: \textbf{EAlg}\rightarrow[\mathbb{N},\textbf{Set}].
$$

The test is the nerve (up to...)

We have an equivalence of categories:

```
- \circ \mathcal{P}^{op} : [FinBA^{op}, Set] \to [\mathbb{N}, Set].
```
Proposition

The test functor $T : EAlg \rightarrow [N, Set]$ is naturally isomorphic to the nerve functor composed with the above equivalence:

$$
\textit{N}_{\text{FinBA}}(-)\circ\mathcal{P}^{op}: \textbf{EAlg}\rightarrow[\mathbb{N},\textbf{Set}].
$$

Corollary

The category **FinBA** is a dense subcategory of **EAlg**.

Let E be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is summable if the sum

Let E be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is summable if the sum

$$
\bigoplus_{a\in A}\eta(a)\cdot a
$$

exists (if it exists it is well-defined).

Let E be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is summable if the sum

$$
\bigoplus_{a\in A}\eta(a)\cdot a
$$

exists (if it exists it is well-defined).

Definition

Let E be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is a partition of unity if it is summable, $0 \notin A$, and

$$
\bigoplus_{a\in A}\eta(a)\cdot a=1.
$$

 \blacktriangleright Part(E) is partially ordered "by refinement":

 \blacktriangleright Part(E) is partially ordered "by refinement":

 \triangleright $\mathcal{P} \leq \mathcal{Q}$ if \mathcal{P} can be partitioned into $|\mathcal{Q}|$ parts such that the sum of each such part is a unique (up to the multiplicity) element of Q .

 \blacktriangleright Part(E) is partially ordered "by refinement":

- \triangleright $\mathcal{P} \leq \mathcal{Q}$ if \mathcal{P} can be partitioned into $|\mathcal{Q}|$ parts such that the sum of each such part is a unique (up to the multiplicity) element of Q .
- **Partitions of unity are in one-to-one correspondence with** images of discrete positive operator valued measures (POVMs).
	- \blacktriangleright The refinement order corresponds to coarse-graining.

The partitions of unity functor

▶ Partitions of unity extend to a functor Part : $EAlg \rightarrow Pos$.

The partitions of unity functor

I Partitions of unity extend to a functor Part : $EAlg \rightarrow Pos$.

Definition

Let $F: \mathcal{C} \to \mathcal{D}$ be a functor, and let \mathfrak{C} be an isomorphism-closed subclass of objects of C . We say that F is essentially injective on C-objects if for any objects $C, B \in \mathfrak{C}$, having $F(C) \simeq F(B)$ implies $C \simeq B$.

The partitions of unity functor

I Partitions of unity extend to a functor Part : $EAlg \rightarrow Pos$.

Definition

Let $F: \mathcal{C} \to \mathcal{D}$ be a functor, and let \mathfrak{C} be an isomorphism-closed subclass of objects of $\mathcal C$. We say that F is essentially injective on C-objects if for any objects $C, B \in \mathfrak{C}$, having $F(C) \simeq F(B)$ implies $C \simeq B$.

Conjecture

The functor

Part : $EAlg \rightarrow Pos$

is essentially injective on effect algebras which do not have minimal partitions of unity of cardinality 2 or less.

 \blacktriangleright Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.

- \blacktriangleright Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.
- ▶ As a byproduct, we have formulated Bohr's doctrine in terms of effect algebras and category theory.

- \blacktriangleright Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.
- \triangleright As a byproduct, we have formulated Bohr's doctrine in terms of effect algebras and category theory.
- \triangleright Open problem 1: Characterise those functors $[N, Set]$ which correspond to an effect algebra.

- \blacktriangleright Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.
- \triangleright As a byproduct, we have formulated Bohr's doctrine in terms of effect algebras and category theory.
- \triangleright Open problem 1: Characterise those functors $[N, Set]$ which correspond to an effect algebra.
- \triangleright Open problem 2: Show that not just tests but also partitions of unity have enough information to reconstruct an effect algebra.

References

- \blacktriangleright Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories. London Mathematical Society lecture note series 189, Cambridge University Press.
- **Paul Busch, Marian Grabowski, and Pekka J. Lahti. Operational** Quantum Physics. Lecture Notes in Physics. Berlin Heidelberg: Springer-Verlag, 1995.
- **Anatolij Dvurečenskij and Sylvia Pulmannová.** New Trends in Quantum Structures. Mathematics and Its Applications. Dordrecht: Kluwer Academic Publishers, 2000.
- \blacktriangleright Leo Lobski. Quantum quirks, classical contexts: Towards a Bohrification of effect algebras. Master of Logic Thesis (MoL) Series, MoL-2020-09. https://eprints.illc.uva.nl/id/eprint/1762.
- ▶ Sam Staton and Sander Uijlen. Effect algebras, presheaves, non-locality and contextuality. Information and Computation, volume 261, part 2. Elsevier 2018.

Thank you for your attention!