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The structure of a measurement in quantum mechanics

(theorist’s perspective)

> A system is modelled by a Hilbert space
> We have access to the system via measurements only

> A finite positive operator valued measure is a finite set
{A;}ics of positive semi-definite self-adjoint operators

such that
d A=
icl
» Philosophical problem: is the information contained in the

measurements sufficient to know the system?

» Operational quantum mechanics: replace the Hilbert space
with the set of effects: physical outcomes which may actually
occur
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Effect algebras

Definition
An effect algebra is a partial algebra (E,0,1,, L, &) such that the
following hold for all a, b, c € E:
(E1) ifa L b,then b Laand ad® b=bd a,
(E2) ifa L band (a® b) L ¢, then b L cand a L (b® c) as well
as
(adb)dc=ad(bdc),

(E3) a L d anda®ad =1, and if a L b such that a® b =1, then
b=24,

(E4) if a L 1, then a=0.
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Examples

CLASSICAL

Boolean algebras MV-algebras o-algebras

BINARY effect algebras PROBABILISTIC

orthomodular posets/lattices Hilbert space effects

QUANTUM
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Goal for today

FinBA is dense in EAlg
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Definition
Let A be a small, full subcategory of a category C.For an object
C € C, the canonical diagram of C with respect to A is the

forgetful functor
D:A/C—C.

We say that C is a canonical colimit of A-objects if the canonical
diagram has a colimit with vertex C and coprojections

D (A 1 C) Lic
where f : A — C ranges through the objects of A/C.
Definition

A small, full subcategory A of a category C is dense if every object
of C is a canonical colimit of A-objects.
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The nerve functor

Definition
Let A be a small, full subcategory of a category C. The nerve

functor
Ny :C — [A, Set]

is defined by restriction of the Yoneda embedding
y :C — [C°P,Set].

Proposition
Let A be a small, full subcategory of a category C. Then A is
dense if and only if the nerve functor N4 is full and faithful.
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The test functor

Definition
Let E be an effect algebra and let n € N. An n-test is a list of
elements of E of length n

(e1,...,€n)

such that their sum ;. e; exists and is equal to 1.
We use this to define a functor for each effect algebra E:

T(E) : N — Set
n+— T(E)(n)
(n LN m) — (T(E)(n) = T(E)(m))

(e1,...,€n) '—>( EB ei)
ief=1(j) j=1,..m

3]
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This further lifts to the test functor:

T . EAlg — [N, Set]
E s T(E)
(a:E—= F)— T(a),

where T(a) : T(E) — T(F) is the natural transformation with
components

Theorem (Staton and Uijlen 2015)
The test functor T : EAlg — [N, Set] is full and faithful.

12/18



The test is the nerve (up to...)

We have an equivalence of categories:

— o P% : [FinBA®", Set] — [N, Set].

13/18



The test is the nerve (up to...)

We have an equivalence of categories:

— o P% : [FinBA®", Set] — [N, Set].

Proposition
The test functor T : EAlg — [N, Set]| is naturally isomorphic to the
nerve functor composed with the above equivalence:

Neina(—) © P°P : EAlg — [N, Set].

13/18



The test is the nerve (up to...)

We have an equivalence of categories:

— o P% : [FinBA®", Set] — [N, Set].

Proposition

The test functor T : EAlg — [N, Set]| is naturally isomorphic to the
nerve functor composed with the above equivalence:

Neina(—) © P°P : EAlg — [N, Set].

Corollary
The category FinBA s a dense subcategory of EAlg.
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Partitions of unity

Let E be an effect algebra. A multiset (A, n) such that AC E is
summable if the sum
EBna)-a

acA
exists (if it exists it is well-defined).
Definition
Let E be an effect algebra. A multiset (A, n) such that AC E is a
partition of unity if it is summable, 0 ¢ A, and

@n(a)-a: 1.

acA
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Partitions of unity

» Part(E) is partially ordered “by refinement™

» P < Qif P can be partitioned into |Q| parts such that
the sum of each such part is a unique (up to the
multiplicity) element of Q.

» Partitions of unity are in one-to-one correspondence with
images of discrete positive operator valued measures
(POVMs).

» The refinement order corresponds to coarse-graining.
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The partitions of unity functor

> Partitions of unity extend to a functor Part : EAlg — Pos.

Definition

Let F:C — D be a functor, and let € be an isomorphism-closed
subclass of objects of C. We say that F is essentially injective on
C-objects if for any objects C, B € €, having F(C) ~ F(B) implies
C ~B.

Conjecture

The functor
Part : EAlg — Pos

is essentially injective on effect algebras which do not have minimal
partitions of unity of cardinality 2 or less.
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Conclusion

> Effect algebras are a natural generalisation of Boolean
algebras, that give models for binary, probabilistic, classical
and quantum reasoning.

> As a byproduct, we have formulated Bohr's doctrine in terms
of effect algebras and category theory.

» Open problem 1: Characterise those functors [N, Set] which
correspond to an effect algebra.

» Open problem 2: Show that not just tests but also partitions of
unity have enough information to reconstruct an effect algebra.
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Thank you for your attention!
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