Categorical embeddings of effect algebras

Leo Lobski University College London leo.lobski.21@ucl.ac.uk

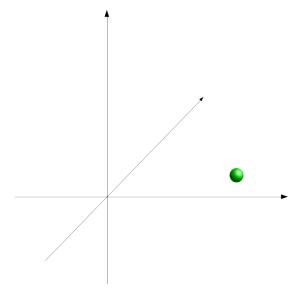
21 March 2022 University of East Anglia Pure Maths Seminar

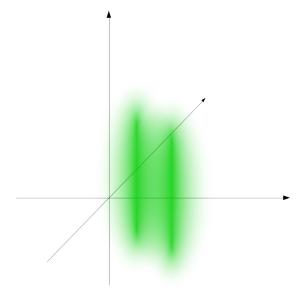
The structure of a measurement in quantum mechanics

Effect algebras

Finite Boolean algebras are dense in effect algebras

Partitions of unity





A system is modelled by a Hilbert space

- A system is modelled by a Hilbert space
- We have access to the system via measurements only

- A system is modelled by a Hilbert space
- ▶ We have access to the system via measurements only
 - A finite positive operator valued measure is a finite set {A_i}_{i∈I} of positive semi-definite self-adjoint operators such that

$$\sum_{i\in I}A_i=I.$$

- A system is modelled by a Hilbert space
- ▶ We have access to the system via measurements only
 - ► A finite positive operator valued measure is a finite set {A_i}_{i∈I} of positive semi-definite self-adjoint operators such that

$$\sum_{i\in I}A_i=I.$$

Philosophical problem: is the information contained in the measurements sufficient to know the system?

- A system is modelled by a Hilbert space
- ▶ We have access to the system via measurements only
 - A finite positive operator valued measure is a finite set {A_i}_{i∈I} of positive semi-definite self-adjoint operators such that

$$\sum_{i\in I}A_i=I.$$

- Philosophical problem: is the information contained in the measurements sufficient to know the system?
- Operational quantum mechanics: replace the Hilbert space with the set of *effects*: physical outcomes which may actually occur

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

Definition

An *effect algebra* is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

(E1) if $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$,

Definition

An effect algebra is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

(E1) if $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$,

(E2) if $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp c$ and $a \perp (b \oplus c)$ as well as

$$(a \oplus b) \oplus c = a \oplus (b \oplus c),$$

Definition

An effect algebra is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

(E1) if
$$a\perp b$$
, then $b\perp a$ and $a\oplus b=b\oplus a$,

(E2) if
$$a\perp b$$
 and $(a\oplus b)\perp c$, then $b\perp c$ and $a\perp (b\oplus c)$ as well as

$$(a \oplus b) \oplus c = a \oplus (b \oplus c),$$

(E3) $a \perp a'$ and $a \oplus a' = 1$, and if $a \perp b$ such that $a \oplus b = 1$, then b = a',

Definition

An effect algebra is a partial algebra $(E, 0, 1, ', \bot, \oplus)$ such that the following hold for all $a, b, c \in E$:

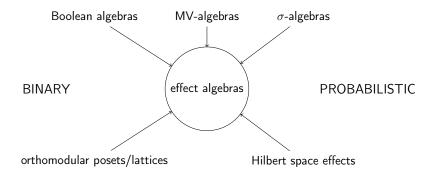
(E1) if
$$a\perp b$$
, then $b\perp a$ and $a\oplus b=b\oplus a$,

(E2) if $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp c$ and $a \perp (b \oplus c)$ as well as

$$(a \oplus b) \oplus c = a \oplus (b \oplus c),$$

(E3) $a \perp a'$ and $a \oplus a' = 1$, and if $a \perp b$ such that $a \oplus b = 1$, then b = a', (E4) if $a \perp 1$, then a = 0. Examples

CLASSICAL



QUANTUM

Goal for today

FinBA is dense in EAlg

 $\begin{array}{l} \mbox{Definition}\\ \mbox{Let } \mathcal{A} \mbox{ be a small, full subcategory of a category } \mathcal{C}. \end{array}$

Definition

Let \mathcal{A} be a small, full subcategory of a category \mathcal{C} . For an object $C \in \mathcal{C}$, the *canonical diagram* of C with respect to \mathcal{A} is the forgetful functor

$$D: \mathcal{A}/\mathcal{C} \longrightarrow \mathcal{C}.$$

Definition

Let \mathcal{A} be a small, full subcategory of a category \mathcal{C} .For an object $C \in \mathcal{C}$, the *canonical diagram* of C with respect to \mathcal{A} is the forgetful functor

$$D: \mathcal{A}/\mathcal{C} \longrightarrow \mathcal{C}.$$

We say that C is a *canonical colimit of* A*-objects* if the canonical diagram has a colimit with vertex C and coprojections

$$D\left(A \xrightarrow{f} C\right) \xrightarrow{f} C,$$

where $f : A \rightarrow C$ ranges through the objects of \mathcal{A}/C .

Definition

Let \mathcal{A} be a small, full subcategory of a category \mathcal{C} .For an object $C \in \mathcal{C}$, the *canonical diagram* of C with respect to \mathcal{A} is the forgetful functor

$$D: \mathcal{A}/\mathcal{C} \longrightarrow \mathcal{C}.$$

We say that C is a *canonical colimit of* A*-objects* if the canonical diagram has a colimit with vertex C and coprojections

$$D\left(A \xrightarrow{f} C\right) \xrightarrow{f} C,$$

where $f : A \rightarrow C$ ranges through the objects of A/C.

Definition

A small, full subcategory A of a category C is *dense* if every object of C is a canonical colimit of A-objects.

The nerve functor

Definition

Let ${\mathcal A}$ be a small, full subcategory of a category ${\mathcal C}.$ The nerve functor

 $\mathit{N}_{\mathcal{A}}:\mathcal{C}\rightarrow [\mathcal{A}^{op},\mathsf{Set}]$

The nerve functor

Definition

Let ${\mathcal A}$ be a small, full subcategory of a category ${\mathcal C}.$ The nerve functor

$$N_{\mathcal{A}}: \mathcal{C}
ightarrow [\mathcal{A}^{op}, \mathbf{Set}]$$

is defined by restriction of the Yoneda embedding $y : \mathcal{C} \to [\mathcal{C}^{op}, \mathbf{Set}].$

The nerve functor

Definition

Let ${\mathcal A}$ be a small, full subcategory of a category ${\mathcal C}.$ The *nerve functor*

 $\textit{N}_{\mathcal{A}}:\mathcal{C}\rightarrow [\mathcal{A}^{op},\textbf{Set}]$

is defined by restriction of the Yoneda embedding $y : \mathcal{C} \to [\mathcal{C}^{op}, \mathbf{Set}].$

Proposition

Let \mathcal{A} be a small, full subcategory of a category \mathcal{C} . Then \mathcal{A} is dense if and only if the nerve functor $N_{\mathcal{A}}$ is full and faithful.

Definition

Let *E* be an effect algebra and let $n \in \mathbb{N}$. An *n*-test is a list of elements of *E* of length *n*

 (e_1,\ldots,e_n)

such that their sum $\bigoplus_{i=1}^{n} e_i$ exists and is equal to 1.

Definition

Let *E* be an effect algebra and let $n \in \mathbb{N}$. An *n*-test is a list of elements of *E* of length *n*

 (e_1,\ldots,e_n)

such that their sum $\bigoplus_{i=1}^{n} e_i$ exists and is equal to 1. We use this to define a functor for each effect algebra E:

Definition

Let *E* be an effect algebra and let $n \in \mathbb{N}$. An *n*-test is a list of elements of *E* of length *n*

$$(e_1,\ldots,e_n)$$

such that their sum $\bigoplus_{i=1}^{n} e_i$ exists and is equal to 1. We use this to define a functor for each effect algebra E:

$$T(E) : \mathbb{N} \to \mathbf{Set}$$

$$n \mapsto T(E)(n)$$

$$\left(n \xrightarrow{f} m\right) \mapsto (T(E)(n) \to T(E)(m))$$

$$(e_1, \dots, e_n) \mapsto \left(\bigoplus_{i \in f^{-1}(j)} e_i\right)_{j=1,\dots,m}$$

This further lifts to the *test functor*.

$$egin{aligned} \mathcal{T}: \mathbf{EAlg} &
ightarrow [\mathbb{N}, \mathbf{Set}] \ & E &\mapsto \mathcal{T}(E) \ & (lpha: E
ightarrow F) \mapsto \mathcal{T}(lpha), \end{aligned}$$

This further lifts to the *test functor*.

$$\mathcal{T} : \mathbf{EAlg} \to [\mathbb{N}, \mathbf{Set}]$$

 $E \mapsto \mathcal{T}(E)$
 $(lpha : E \to F) \mapsto \mathcal{T}(lpha),$

where $T(\alpha) : T(E) \rightarrow T(F)$ is the natural transformation with components

$$T(\alpha)_n: T(E)(n) \to T(F)(n)$$

(e_1,...,e_n) $\mapsto (\alpha(e_1),...,\alpha(e_n)).$

This further lifts to the *test functor*.

$$T : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}]$$
$$E \mapsto T(E)$$
$$(\alpha : E \to F) \mapsto T(\alpha),$$

where $T(\alpha) : T(E) \rightarrow T(F)$ is the natural transformation with components

$$T(\alpha)_n : T(E)(n) \to T(F)(n)$$

 $(e_1, \dots, e_n) \mapsto (\alpha(e_1), \dots, \alpha(e_n)).$

Theorem (Staton and Uijlen 2015) The test functor $T : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}]$ is full and faithful. The test is the nerve (up to...)

We have an equivalence of categories:

```
-\circ \mathcal{P}^{op}: [FinBA<sup>op</sup>, Set] \rightarrow [\mathbb{N}, Set].
```

The test is the nerve (up to...)

We have an equivalence of categories:

```
-\circ \mathcal{P}^{\textit{op}}: [\mathsf{FinBA}^{\textit{op}}, \mathsf{Set}] \to [\mathbb{N}, \mathsf{Set}].
```

Proposition

The test functor $T : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}]$ is naturally isomorphic to the nerve functor composed with the above equivalence:

$$N_{\mathsf{FinBA}}(-) \circ \mathcal{P}^{op} : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}].$$

The test is the nerve (up to...)

We have an equivalence of categories:

```
-\circ \mathcal{P}^{\textit{op}}: [\mathsf{FinBA}^{\textit{op}}, \mathsf{Set}] \to [\mathbb{N}, \mathsf{Set}].
```

Proposition

The test functor $T : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}]$ is naturally isomorphic to the nerve functor composed with the above equivalence:

$$N_{\mathsf{FinBA}}(-) \circ \mathcal{P}^{op} : \mathsf{EAlg} \to [\mathbb{N}, \mathsf{Set}].$$

Corollary

The category FinBA is a dense subcategory of EAlg.

Let *E* be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is *summable* if the sum

Let *E* be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is *summable* if the sum

$$\bigoplus_{a\in A}\eta(a)\cdot a$$

exists (if it exists it is well-defined).

Let *E* be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is *summable* if the sum

$$\bigoplus_{a\in A}\eta(a)\cdot a$$

exists (if it exists it is well-defined).

Definition

Let *E* be an effect algebra. A multiset (A, η) such that $A \subseteq E$ is a *partition of unity* if it is summable, $0 \notin A$, and

$$\bigoplus_{a\in A}\eta(a)\cdot a=1.$$

Part(E) is partially ordered "by refinement":

Part(E) is partially ordered "by refinement":

P ≤ Q if P can be partitioned into |Q| parts such that the sum of each such part is a unique (up to the multiplicity) element of Q.

Part(E) is partially ordered "by refinement":

- P ≤ Q if P can be partitioned into |Q| parts such that the sum of each such part is a unique (up to the multiplicity) element of Q.
- Partitions of unity are in one-to-one correspondence with images of discrete positive operator valued measures (POVMs).
 - The refinement order corresponds to coarse-graining.

The partitions of unity functor

▶ Partitions of unity extend to a functor Part : $EAlg \rightarrow Pos$.

The partitions of unity functor

▶ Partitions of unity extend to a functor Part : $EAlg \rightarrow Pos$.

Definition

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor, and let \mathfrak{C} be an isomorphism-closed subclass of objects of \mathcal{C} . We say that F is *essentially injective on* \mathfrak{C} -objects if for any objects $C, B \in \mathfrak{C}$, having $F(C) \simeq F(B)$ implies $C \simeq B$.

The partitions of unity functor

▶ Partitions of unity extend to a functor Part : $EAlg \rightarrow Pos$.

Definition

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor, and let \mathfrak{C} be an isomorphism-closed subclass of objects of \mathcal{C} . We say that F is *essentially injective on* \mathfrak{C} -objects if for any objects $C, B \in \mathfrak{C}$, having $F(C) \simeq F(B)$ implies $C \simeq B$.

Conjecture

The functor

$\mathsf{Part}: \textbf{EAlg} \to \textbf{Pos}$

is essentially injective on effect algebras which do not have minimal partitions of unity of cardinality 2 or less.

 Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.

- Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.
- As a byproduct, we have formulated Bohr's doctrine in terms of effect algebras and category theory.

- Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.
- As a byproduct, we have formulated Bohr's doctrine in terms of effect algebras and category theory.
- ▶ Open problem 1: Characterise those functors [N, Set] which correspond to an effect algebra.

- Effect algebras are a natural generalisation of Boolean algebras, that give models for binary, probabilistic, classical and quantum reasoning.
- As a byproduct, we have formulated Bohr's doctrine in terms of effect algebras and category theory.
- ▶ Open problem 1: Characterise those functors [N, Set] which correspond to an effect algebra.
- Open problem 2: Show that not just tests but also partitions of unity have enough information to reconstruct an effect algebra.

References

- Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories. London Mathematical Society lecture note series 189, Cambridge University Press.
- Paul Busch, Marian Grabowski, and Pekka J. Lahti. Operational Quantum Physics. Lecture Notes in Physics. Berlin Heidelberg: Springer-Verlag, 1995.
- Anatolij Dvurečenskij and Sylvia Pulmannová. New Trends in Quantum Structures. Mathematics and Its Applications. Dordrecht: Kluwer Academic Publishers, 2000.
- Leo Lobski. Quantum quirks, classical contexts: Towards a Bohrification of effect algebras. Master of Logic Thesis (MoL) Series, MoL-2020-09. https://eprints.illc.uva.nl/id/eprint/1762.
- Sam Staton and Sander Uijlen. Effect algebras, presheaves, non-locality and contextuality. Information and Computation, volume 261, part 2. Elsevier 2018.

Thank you for your attention!