String diagrams for layered structures

Leo Lobski

University College London

ILLC LLAMA Seminar 11 January 2022

Outline

Monoidal categories and string diagrams as models of compositional systems

Layers of abstraction

Case study: diagrammatic electrical circuit theory

Case study: retrosynthetic analysis

Layered props

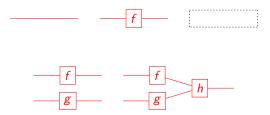
Layered props - semantically

Monoidal categories and string diagrams

Definition

A monoidal category is a triple $(\mathcal{C}, \otimes, I)$, where \mathcal{C} is a category, $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a functor and I is an object of \mathcal{C} , such that the appropriate associativity and unitality conditions hold.

Objects of C are represented by *wires*, morphisms by *boxes*, the unit I by the empty diagram, the monoidal product \otimes by juxtaposition, and composition in C by joining the wires.



Applications of string diagrams

- Quantum computing: ZX-calculus (Coecke, Duncan and many others), dagger-compact categories (Heunen, Vicary)
- Electrical circuit theory (and linear algebra): Bonchi, Piedeleu, Sobociński, Zanasi, Boisseau
- Logic: game semantics (Melliès), Peirce's existential graphs (Haydon, Sobociński), semantics of linear logic (Acclavio)
- Computer science: computability theory (Pavlovic), rewrite theory (Bonchi, Gadducci, Kissinger, Sobociński, Zanasi), dataflow programming (Román)

Layers of abstraction

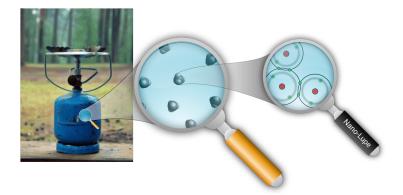


Image source: Openclipart

Electrical circuits

View electrical circuit diagrams as a free prop (= strict symmetric monoidal category with the natural numbers as objects) ECirc

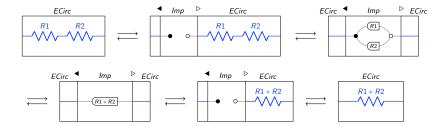
$$\left\{ \begin{array}{c} \overset{\mathsf{R}}{\xrightarrow{}}, \overset{\vee}{\xrightarrow{}}, \overset{\mathsf{L}}{\xrightarrow{}}, \\ \overset{\mathsf{L}}{\xrightarrow{}}, \overset{\mathsf{C}}{\xrightarrow{}}, \end{array}, \begin{array}{c} \overset{\mathsf{L}}{\xrightarrow{}}, \overset{\mathsf{C}}{\xrightarrow{}}, \\ \overset{\mathsf{R}}{\xrightarrow{}}, \overset{\mathsf{L}}{\xrightarrow{}}, \end{array} \right\}_{R,L,C \in \mathbb{R}_+, V, I \in \mathbb{R}} \cup \left\{ \overbrace{-\longleftarrow}^{\mathsf{L}}, \overbrace{-\rightarrow}, \overbrace{-\longleftarrow}^{\mathsf{L}}, \overbrace{-}, \overbrace{-},$$

- Functorially interpret the electrical circuit diagrams in graphical affine algebra GAA
- This captures the behaviour of electrical components!

We wish to derive the rule for the sequential composition of resistors:

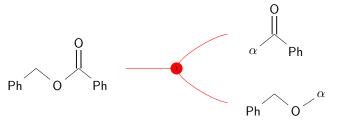
 $- \underbrace{\overset{R1}{\longleftarrow} \overset{R2}{\longleftarrow} \overset{R1+R2}{\longleftarrow}$

Electrical circuits



Retrosynthetic analysis

- Start with a target compound
- Formally decompose the target compound into smaller (formal!) "molecules" (called synthons):



Search for chemically equivalent molecules which actually exist or are theoretically possible (called *synthetic equivalents*):

Ph

Repeat until actually existing compounds are reached

Ph

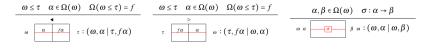
Definition

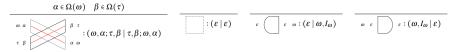
A layered signature is a functor $\Omega: P \rightarrow \mathbf{StrMon}$ from a poset P which does not send non-isomorphic objects to isomorphic objects.

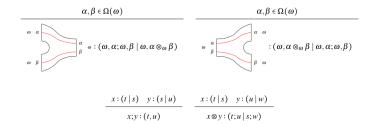
Definition

A *layered prop* generated by Ω is a 2-category whose 0-cells are lists $(\omega_1, a_1; \ldots; \omega_n, a_n)$ of pairs (ω, a) , where $\omega \in P$ and $a \in \Omega(\omega)$, and whose 1-cells are generated by the procedure below:

Layered props: 1-cells







Layered props: 2-cells

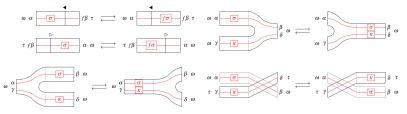


Figure 2: 2-cells of a layered prop expressing functoriality of refinement, coarsening, pants and copants.

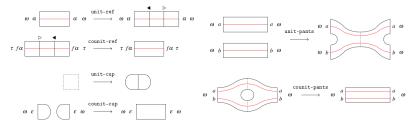


Figure 3: 2-cells of a layered prop that exhibit pants-copants and refinement-coarsening as two adjoint pairs.

Layered props: 2-cells

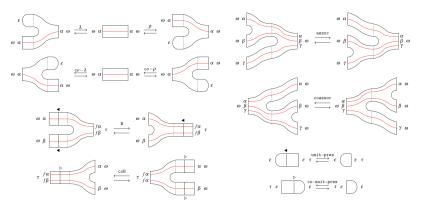


Figure 4: 2-cells of a layered prop that are motivated by monoidal categories and functors.

Layered props - semantically

Definition

An ordered monoid is a tuple $(M, \cdot, 1, \leq)$ such that $(M, \cdot, 1)$ is a monoid, and \leq is a partial order on M such that $x \leq y$ and $z \leq w$ imply $xz \leq yw$.

Definition

Let P be a poset. The *free ordered monoid* generated by P has the free monoid P^* as its monoid structure, and the relation \leq on P^* is generated by

- $\varepsilon \leq \varepsilon$,
- for $x, y \in P$, we have $x \le y$ in P^* if and only if $x \le y$ in P,
- ▶ for $n, m \ge 2$, we have $x_1 \cdots x_n \le y_1 \cdots y_m$ if and only if n = m and for each i = 1, ..., n we have $x_i \le y_i$.

The free symmetric ordered monoid generated by P additionally has for all $x, y \in P$ the inequality $xy \leq yx$.

Layered props - semantically

Definition

Let *P* be a poset. Let us denote by $\mathcal{L}(P)$ the free symmetric ordered monoid generated by *P*, to which for all $x \in P$, we freely add morphisms $xx \to x$ and $\varepsilon \to x$.

Proposition

Any layered signature $\Omega: P \to$ **StrMon** uniquely extends to a monoidal functor $\Omega: \mathcal{L}(P) \to$ **StrMon** which maps the morphisms $xx \to x$ to $\otimes: \Omega(x) \times \Omega(x) \to \Omega(x)$ and $\varepsilon \to x$ to the unique monoidal functor $\mathbf{1} \to \Omega(x)$.

Layered props - semantically

 $\Omega : \mathcal{L}(P) \rightarrow$ **StrMon** gives rise to two 2-categories, both having pairs $(\omega, a \in \Omega(\omega))$ as objects. A morphism $(F, f) : (\omega, a) \rightarrow (\tau, b)$ is given by one of the following:

►
$$F: \omega \to \tau$$
 and $f: \Omega(F)(a) \to b$, denote: $Gr(\Omega)$

• $F: \omega \to \tau$ and $f: b \to \Omega(F)(a)$, denote: $Gr^{\leftarrow}(\Omega)$.

We have two locally full and faithful functors into pointed profunctors:

 $Gr(\Omega)^{co} \hookrightarrow \mathbf{Prof}_*$ $Gr^{\leftarrow}(\Omega)^{op} \hookrightarrow \mathbf{Prof}_*$

Theorem

A layered prop generated by a layered signature Ω is 2-equivalent to the subcategory of **Prof**_{*} generated by the union of the images of the above embeddings.

Profunctors

Define the bicategory of *profunctors* **Prof** as:

- the 0-cells are (small) categories,
- ▶ the 1-cells, denoted by $\mathcal{C} \longrightarrow \mathcal{D}$, are functors

$$\mathcal{C}^{op} \times \mathcal{D} \to \mathbf{Set},$$

- the 2 *cells* are natural transformations $\alpha : F \Rightarrow G$,
- the composition

$$c_{\mathcal{A},\mathcal{B},\mathcal{C}}$$
: $Prof(\mathcal{A},\mathcal{B}) \times Prof(\mathcal{B},\mathcal{C}) \rightarrow Prof(\mathcal{A},\mathcal{C})$

takes profunctors $F : \mathcal{A} \longrightarrow \mathcal{B}$ and $G : \mathcal{B} \longrightarrow \mathcal{C}$ to the coend $G \circ F = \int^{B} F(-, B) \times G(B, =)$. Explicitly, we define

$$(G \circ F)(A, C) \coloneqq \int^{B \in \mathcal{B}} F(A, B) \times G(B, C).$$

Profunctors

There are two embeddings:

$$\mathfrak{p}^{-} : \mathbf{Cat}^{co} \to \mathbf{Prof}$$
$$F : \mathcal{C} \to \mathcal{D} \mapsto \mathcal{D}(F^{-}, =)$$
$$\eta : F \to G \mapsto - \circ \eta_{C}$$

$$p_{-}: \mathbf{Cat}^{op} \to \mathbf{Prof}$$
$$F: \mathcal{C} \to \mathcal{D} \mapsto \mathcal{D}(=, F-)$$
$$\eta: F \to G \mapsto \eta_{\mathcal{C}} \circ -$$

Both are locally fully faithful, and \mathfrak{p}^F is the left adjoint to \mathfrak{p}_F .

Pointed profunctors

Define the bicategory of *pointed profunctors* **Prof**_{*} as:

- the 0-cells are pairs (C, c) of a (small) category C and an object c ∈ Ob(C),
- ▶ the 1-cells $(P, f) : (C, c) \to (D, d)$ consist of a profunctor $P : C \longrightarrow D$, that is, a functor

$$P: \mathcal{C}^{op} \times \mathcal{D} \to \mathbf{Set},$$

together with an element $f \in P(c, d)$,

- the 2-cells $\alpha : (P, f) \rightarrow (Q, g)$ are natural transformations $\alpha : P \Rightarrow Q$ such that $\alpha_{c,d}(f) = g$,
- the composition of (P, f) : (C, c) → (D, d) and (Q,g) : (D,d) → (E,e) is given by (Q ∘ P, [f,g]), where ∘ is the composition of profunctors and [f,g] the equivalence class of the pair (f,g) in (Q ∘ P)(c,e).

Conclusion and future work

- Layered props are a promising framework for scientific modelling with several layers
- Model "synthetic equivalence" using the language of layered props
- Model sequential decision making in layers of neural networks
- Model counterfactual reasoning/processes as a separate layer
- Integrate inconsistent data into a single framework

References

- Leo Lobski, Fabio Zanasi. String diagrams for layered explanations. ACT 2022.
- Peter Selinger. A survey of graphical languages for monoidal categories. New Structures for Physics.
- Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, Fabio Zanasi. Graphical Affine Algebra. LICS 2019.
- Guillaume Boisseau and Paweł Sobociński. String Diagrammatic Electrical Circuit Theory. 2021.
- Jonathan Clayden, Nick Greeves, Stuart Warren. Organic chemistry. OUP 2012.
- Fosco Loregian. Coend calculus. 2015.

Thank you for your attention!