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Monoidal categories and string diagrams

Definition

A monoidal category is a triple (C,®,1), where C is a category,
®:C xC — C is a functor and / is an object of C, such that the
appropriate associativity and unitality conditions hold.

Objects of C are represented by wires, morphisms by boxes, the
unit / by the empty diagram, the monoidal product ® by
juxtaposition, and composition in C by joining the wires.
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Applications of string diagrams

» Quantum computing: ZX-calculus (Coecke, Duncan and
many others), dagger-compact categories (Heunen, Vicary)

» Electrical circuit theory (and linear algebra): Bonchi, Piedeleu,
Sobociriski, Zanasi, Boisseau

» Logic: game semantics (Mellies), Peirce’s existential graphs
(Haydon, Sobociriski), semantics of linear logic (Acclavio)

» Computer science: computability theory (Pavlovic), rewrite
theory (Bonchi, Gadducci, Kissinger, Sobociriski, Zanasi),
dataflow programming (Roman)
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Layers of abstraction

Image source: Openclipart
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Electrical circuits

» View electrical circuit diagrams as a free prop (= strict
symmetric monoidal category with the natural numbers as
objects) ECirc

SRS

> Functorially interpret the electrical circuit diagrams in
graphical affine algebra GAA

{wé,éwi}

RLCER,, VIR

» This captures the behaviour of electrical components!
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Electrical circuits

We wish to derive the rule for the sequential composition of
resistors:

R1 R2 R1+R2
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Electrical circuits
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Retrosynthetic analysis

» Start with a target compound

» Formally decompose the target compound into smaller
(formal!) “molecules” (called synthons):
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» Search for chemically equivalent molecules which actually exist
or are theoretically possible (called synthetic equivalents):
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» Repeat until actually existing compounds are reached
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Layered props

Definition
A layered signature is a functor 2 : P — StrMon from a poset P
which does not send non-isomorphic objects to isomorphic objects.

Definition
A layered prop generated by () is a 2-category whose O-cells are
lists (w1, a1;-..;wn,an) of pairs (w,a), where we P and

a € Q(w),and whose 1-cells are generated by the procedure below:
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Layered props: 1-cells
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Layered props: 2-cells
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Figure 2: 2-cells of a layered prop expressing functoriality of refinement, coarsening, pants and copants.
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Figure 3: 2-cells of a layered prop that exhibit pants-copants and refinement-coarsening as two adjoint
pairs.
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Layered props: 2-cells
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Figure 4: 2-cells of a layered prop that are motivated by monoidal categories and functors.
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Layered props - semantically

Definition

An ordered monoid is a tuple (M,-,1,<) such that (M,-,;1) is a
monoid, and < is a partial order on M such that x<y and z<w
imply xz < yw.

Definition
Let P be a poset. The free ordered monoid generated by P has the

free monoid P* as its monoid structure, and the relation < on P*
is generated by

> e<g,
> for x,y € P, we have x <y in P* if and only if x <y in P,

> for n,m > 2, we have x3---x, < y1--ym if and only if n=m and
for each i=1,...,n we have x; < y;.

The free symmetric ordered monoid generated by P additionally
has for all x,y € P the inequality xy < yx.
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Layered props - semantically

Definition

Let P be a poset. Let us denote by L(P) the free symmetric
ordered monoid generated by P, to which for all x € P, we freely
add morphisms xx - x and € — x.

Proposition

Any layered signature €2 : P — StrMon uniquely extends to a
monoidal functor Q2 : L(P) — StrMon which maps the morphisms
xx = x to ® : Q(x) x Q(x) = Q(x) and € - x to the unique
monoidal functor 1 - Q(x).
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Layered props - semantically

Q: L(P) — StrMon gives rise to two 2-categories, both having
pairs (w,a € Q(w)) as objects.A morphism (F,f): (w,a) - (7, b)
is given by one of the following:

» F:w—r7and f:Q(F)(a) - b, denote: Gr(Q)

» F:w—7and f:b—Q(F)(a), denote: Gr=(Q).
We have two locally full and faithful functors into pointed
profunctors:

Gr(Q)° = Prof,
Gr=(Q)° < Prof,

Theorem

A layered prop generated by a layered signature () is 2-equivalent
to the subcategory of Prof, generated by the union of the images
of the above embeddings.
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Profunctors
Define the bicategory of profunctors Prof as:
> the O-cells are (small) categories,

> the 1-cells, denoted by C — D, are functors

C°? x D — Set,

» the 2 — cells are natural transformations a: F = G,

> the composition
caBc : Prof(A,B) x Prof(B,C) - Prof(A,C)

takes profunctors F : A — B and G : B—C to the coend
GoF=[PF(-,B)xG(B,=). Explicitly, we define

BeB
(GoF)(A,C) ::f F(A,B) x G(B, C).
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Profunctors

There are two embeddings:

p~ : Cat®® - Prof
F:C->Dw~D(F-,=)
BiF > G o

p_ : Cat°? - Prof
F:C->Dw~D(=F-)
n:F—>G-mnco-

Both are locally fully faithful, and pF is the left adjoint to pr.
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Pointed profunctors

Define the bicategory of pointed profunctors Prof, as:

» the O-cells are pairs (C, c) of a (small) category C and an
object c € Ob(C),

» the 1-cells (P,f):(C,c) - (D, d) consist of a profunctor
P:C — D, that is, a functor

P:C° x D — Set,

together with an element f € P(c, d),

» the 2-cells a: (P,f) - (Q, g) are natural transformations
a: P = Q such that ac 4(f) = g,

» the composition of (P,f):(C,c) - (D,d) and
(Q,g):(D,d) - (€,e) is given by (Qo P,[f,g]), where o is
the composition of profunctors and [f, g] the equivalence
class of the pair (f,g) in (Qo P)(c,e).
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Conclusion and future work

» Layered props are a promising framework for scientific
modelling with several layers

> Model “synthetic equivalence” using the language of layered
props

» Model sequential decision making in layers of neural networks

» Model counterfactual reasoning/processes as a separate layer

> Integrate inconsistent data into a single framework
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Thank you for your attention!
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