
Sheaves on Topological
Spaces and their Logic

Leo Lobski

Year 4 Project

School of Mathematics

University of Edinburgh

6 April 2018





Abstract

We introduce presheaves on a topological space as contravariant functors, and
sheaves as presheaves satisfying the gluing axiom (Definition 2.3). It is demon-
strated how sheaves can be used to distinguish between local and global properties
of structures in a topological space. We proceed to define bundles on a topologi-
cal space together with their sections, and construct an adjunction between the
category of presheaves and the category of bundles. Chapter 2 is concluded with
an important result, the equivalence of categories of sheaves and étale bundles.

In Chapter 1, we introduce the notion of an elementary topos as a generalisa-
tion of the category of sets. It turns out that the category of sheaves is a topos,
which is the object of discussion in Chapter 3. The main aim there is to construct
the subobject classifier for sheaves, and to show that the logic it gives rise to is in
general non-Boolean. To this end, we define Boolean and Heyting algebras, and
demonstrate how any topos gives rise to Heyting algebras of subobjects.

This project report is submitted in partial fulfilment of the requirements for the
degree of BSc Mathematics.
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Introduction

Suppose you are dropped on a random point on a map. By simply looking around,
you can verify that you are indeed on a map representing some part of the planet
Earth. However, if someone asks you whether the map you are on is contained
within the boundaries of a country1, you are clueless. In order to find this out
you need to take a step back, you need to know something about the entire map
rather than what is happening around each point. The difference between ‘maps’
and ‘maps that are contained within a country’ can be captured by noticing that
maps with no extra requirements satisfy a universal property. Namely, given any
collection of maps which agree whenever they describe the same geographical area
(that is, the maps use the same projection, are from the same historical period,
include the same details and so on), we can construct a new map by ‘gluing’ these
pieces together. Moreover, there is exactly one such map which coincides with
each of the maps in the original collection, meaning we have no choice in how to
glue the maps. This corresponds to the idea that we can verify that we are on
some map by ‘looking around’; we can identify a small piece of map around each
point, then gluing the pieces together (which necessarily coincide on the overlaps)
reproduces the original map. Furthermore, this property fails for maps that are
contained within a country. Indeed, consider a map of Haparanda (a border town
in Sweden) and that of Tornio (a border town in Finland), while both of these
are contained within a country, the glued map of the cross-border agglomeration
formed by the two towns is not.

The observations made in the introductory example above lead to the distinc-
tion between local and global properties. Since maps with no additional require-
ments are determined by considering some neighbourhood around each point, we
have the intuition that the property of being a map is local. In contrast, since
determining whether a map is contained in a country requires ‘the whole picture’,
we would like to say that this property is global. One of the aims of this work is
to make this distinction precise by introducing the notion of a sheaf.

After defining a sheaf, we will provide a number of examples illustrating that
sheaves do indeed distinguish local and global properties of structures living in
a topological space. The canonical example is the sheaf of continuous functions
(Example 2.6); if a function is continuous at every point, then it is continuous.
This is often contrasted with the presheaf of bounded functions (Example 2.8);
a function that is bounded in some open neighbourhood of each point is by no
means bounded.

1Is there at least one country such that the entire geographical area represented by the map
lies inside that country?
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2 Leo Lobski

We will provide two perspectives on sheaves. The first viewpoint is the one
introduced thus far, which is to regard a sheaf as a special kind of functor pro-
viding a useful tool for distinguishing between local and global properties. In
this guise, we will proceed to show that the category of sheaves on a topological
space is equivalent to the category of special kind of maps into that topological
space; namely, to the category of local homeomorphisms. This is the subject of
Chapter 2. The second perspective is to view sheaves as a structure in its own
right. We will see that the category of sheaves is in fact a topos, meaning roughly
that sheaves have many of the familiar properties of sets. In particular, this will
allow us to talk about Heyting algebras of sheaves in Chapter 3, which in turn
provide the appropriate language for propositional logic of sheaves.

I will assume no familiarity with sheaf or topos theory, as we will start the
discussion by defining an elementary topos in Section 1.2 and a sheaf on a topo-
logical space in Section 2.1. However, I will assume that the reader is familiar
with elementary category theory, although nothing beyond a typical introductory
course or textbook will be needed. In particular, I will freely use such notions as
functors, natural transformations, adjoints, slice categories (which are a special
case of comma categories), equivalence of categories, initial and terminal objects,
limits and colimits. For an introduction to category theory, the reader is referred
to Tom Leinster’s Basic Category Theory [4], or to Emily Riehl’s Category Theory
in Context [8], which both introduce the subject from the beginning. Another
possibility is Saunders Mac Lane’s Categories for the Working Mathematician
[5]. Robert Goldblatt introduces category theory and elementary toposes with
no assumed categorical background in his Topoi, the Categorial Analysis of Logic
[2]; the emphasis there, as the title suggests, is on formulating topos logic.

Despite saying that I will assume familiarity with limits and colimits, Chapter
1 begins with a review of equalisers and pullbacks as well as exponentials. These
will be used to define toposes and sheaves, hence the definitions will be stated so
that we can refer to them later. We then proceed to define a subobject classifier,
which is an important part of the definition of an elementary topos, as it will
allow us to define a Heyting algebra in an arbitrary topos. We conclude the first
chapter by defining an elementary topos, and making sure that it does indeed
generalise the category of sets by checking that Set is an elementary topos.

In Chapter 2, we define sheaves and presheaves. We emphasize the perspec-
tive that sheaves are functors that distinguish between local and global properties.
We then move on to defining bundles over a topological space together with their
sections. These are just continuous maps into the topological space (bundles)
together with a collection of right inverses for these maps (sections). We explic-
itly construct an adjunction between the category of bundles and the category of
presheaves on a topological space. In the same way that we define a sheaf as spe-
cial kind of presheaf, where ‘special’ has something to do with locality, we define
a special type of bundle, namely, an étale bundle as a local homeomorphism. The
main result of the chapter is the fact that the aforementioned adjunction restricts
to an equivalence of categories of sheaves and étale bundles. This is proved in
Section 2.3.

Chapter 3 begins by defining a lattice and a Heyting algebra as a property
of the lattice. The idea behind a Heyting algebra is to provide a model for
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(intuitionistic) propositional logic. We show that the law of excluded middle
is equivalent to the law of double negation in any Heyting algebra. This will
allow us to define a Boolean algebra by imposing the additional requirement on
a Heyting algebra that either of these two equivalent laws is satisfied. Whereas
a Heyting algebra models intuitionistic logic, a Boolean algebra is a suitable
description of classical logic. We will show that Heyting algebras are intimately
connected to toposes in the following way. For any object in a topos, a collection
of its subobjects forms a lattice. Moreover, this lattice has a Heyting algebra
structure. We will show this in Section 3.2.

We will conclude this work by connecting the discussion of algebras in a topos
to sheaves. It turns out that both sheaves and presheaves form a topos. We will
not prove these results in detail despite the fact that the proofs provide interesting
and important insights into the essence of both sheaves and presheaves. The
guiding rationale behind the proofs is outlined in Section 3.3. Nonetheless, we
will be able to construct a subobject classifier for sheaves, which turns out to be
the set of all open sets of the underlying topological space, ordered by inclusion.
This will allow us to show that ‘the logic of sheaves’ is in general not Boolean,
hence reasoning in the category of sheaves is intuitionistic rather than classical.



Chapter 1

Preliminaries

In the first section, we remind the reader of three constructions that make the
category of sets and functions Set special as compared to an arbitrary category.
In the second section these constructions will be first used to define a subobject
classifier, which in turn is a core ingredient in the definition of an elementary
topos. If the reader is comfortable with definitions of an equaliser, exponential
and pullback, the first section can be safely skipped and used as a reference when
needed later in the discussion. Same applies to the second section if the reader
has seen the definition of an elementary topos before.

1.1 Categorical structures

We begin by recalling some categorical constructions needed for the subsequent
discussion of toposes and sheaves. Namely, these will be two important types of
limits, equaliser and pullback, as well as exponential. All of these are motivated
by the same constructions in the category of sets, whose universal properties are
then taken as definitions in a general category.

Definition 1.1. (Equaliser) Let f, g : A ⇒ B be a pair of morphisms in some
category. An equaliser of f and g is a morphism e : E → A such that ef = eg,
which is universal with this property in the sense that for any morphism e′ : E ′ →
A with e′f = e′g, there is a unique map u : E ′ → E such that the diagram

E A
e // B

f //

g
//

E ′

e′

%%

u

��

commutes.

In the category Set, an equaliser of f and g is simply the subset

E = {a ∈ A : f(a) = g(a)}

of A together with the inclusion map e : E ↪→ A. The unique map u is then just
e′ itself with the codomain restricted to E, since we have e′(E ′) ⊆ E.

4
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Definition 1.2. (Exponential) Let X and Y be objects of a category with binary
products. An exponential of Y and X is an object Y X together with a morphism
ev : X × Y X → Y such that for any morphism f : X × Z → Y there exists a
unique morphism f̄ : Z → Y X making the diagram

X × Y X Y
ev //

X × Z
f

$$

idX×f̄

��

commute. The morphism ev : X × Y X → Y is called the evaluation.

In Set, the object Y X is the set of all maps from X to Y and ev : X×Y X → Y
is the evaluation of a map g : X → Y at x ∈ X (hence the name). The unique
map f̄ then sends z ∈ Z to

f(-, z) : X → Y : x 7→ f(x, z).

The last concept of this section is that of a pullback. This will be used in
the next section to define a subobject classifier, and will be very important in
Chapter 3 when we will define a logic in a topos. An extremely vague description
of a pullback, which is nonetheless useful for intuition and memorisation, is to
say that it is ‘the universal commutative square’. Here are the details.

Definition 1.3. (Pullback) A commutative square

A B
f∗ //

C

g∗

��
D

f //

g

��

in some category is a pullback if for any pair of maps h : X → B and k : X → C
such that the outer ‘square’ in the diagram

A B
f∗ //

C

g∗

��
D

f //

g

��

X h

  

k

��

u

��
(1.4)

commutes (i.e. gh = fk), there exists a unique morphism u : X → A such that
the diagram above commutes.

Namely, it is sufficient that g∗u = k and f ∗u = h for the diagram to commute,
as everything else commutes by assumptions. We often say that f ∗ is the pullback
of f along g, and similarly for g∗.
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In Set, a pullback of f : C → D and g : B → D is the subset

A = {((c, b) ∈ C ×B : f(c) = g(b)}

of the product C × B. The maps g∗ and f ∗ are then the inclusion A ↪→ C × B
composed with the projection map from C × B to C and B, respectively. The
unique map u is the product map k×h : X → C×B with the codomain restricted
to A, since we have

{(c, b) ∈ C ×B : c ∈ im k and b ∈ im h} ⊆ A

by commutativity of the outer square in (1.4).
In a general category, equalisers, exponentials and pullbacks are not guaran-

teed to exist unless we make further assumptions about the category in question.
However, if they do exist, they are unique up to a unique isomorphism. For
equalisers and pullbacks, this can either be shown directly, or it follows from a
general result for limits; see, for example Proposition 3.1.7 in Riehl [8, p. 76].
For exponentials, this is shown using universality of the unique map f̄ ; see e.g.
Exercise 6.1 in McLarty [7, p. 65].

The next two results will both serve as an illustration of how pullbacks work
and will be used later.

Proposition 1.5. The pullback of a monic is monic.

Proof. Suppose that the diagram

A B
f∗ //

C

g∗

��
D

f //

g

��

is a pullback in an arbitrary category, and further that f is a monic. We need
to show that f ∗ is a monic. Hence suppose that v, w : E ⇒ A are morphisms
such that f ∗v = f ∗w. Then gf ∗v = gf ∗w, which implies by commutativity of the
square that fg∗v = fg∗w. Since f is monic, we have g∗v = g∗w. We thus have
maps k := g∗v : E → C and h := f ∗v : E → B such that the outer square in (1.4)
commutes. Hence there is a unique u : E → A such that f ∗u = h and g∗u = k.
But h = f ∗v = f ∗w and k = g∗v = g∗w, whence v = u = w by uniqueness of
u.

Lemma 1.6. (The pullback lemma) Suppose that the diagram

• •//

•
��

•//
��

•//

•//
��

in an arbitrary category commutes, and that the square on the right is a pullback.
Then the left square is a pullback if and only if the outer rectangle is a pullback.
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The proof of the pullback lemma consists of repeated (mechanical) applica-
tions of the universal property of pullbacks and is not particularly illuminating.
We thus omit the proof here; however, it can be found as Theorem 4.8 in McLarty
[7, p. 45].

The last definition of this section is that of a poset. It may seem somewhat
out of place, as it has a set-theoretic rather than category-theoretic flavour. We
will, however, give a way to interpret a poset as a category, an observation which
will be used in both subsequent chapters.

Definition 1.7. (Poset) A partially ordered set, or a poset, is a set P equipped
with a relation ‘≤’ which is reflexive, transitive and satisfies

if x ≤ y and y ≤ x, then x = y,

for all x, y ∈ P .

Any poset (P,≤) can be viewed as a category if we declare that there is a
morphism from x ∈ P to y ∈ P if and only if x ≤ y. A typical example is a
power set of an arbitrary set, where the subsets (elements of the power set) are
ordered by inclusion.

1.2 Elementary toposes

In this work, we will take the perspective that a topos is a generalised category of
sets and functions. The definition and all the constructions will thus mimic those
in Set. We have already started applying this viewpoint in the previous section,
by connecting each of the concepts introduced there to the analogous concepts in
Set. It should be emphasized that this is only one of myriads of perspectives to
topos theory. For a brief introduction to some of these, the reader is referred to
Leinster [3]. We will next introduce subobject classifier needed for the definition
of a topos.

The notion of a subobject generalises the notions of subset, subgroup, subring,
subspace etc; in other words, any object, which is in some sense contained in
another object of the same type and inherits its structure. Let C be a category and
C an object of C. A subobject of C is an isomorphism class of monics m : D � C
in the slice category C/C. In detail, two monics m : D � C and n : E � C
belong to the same subobject if there exists an isomorphism f : E

∼−→ D (in C)
such that the diagram

E D
∼
f

//

C

��

n

�� ��

m

��

commutes. Although strictly speaking a subobject is an isomorphism class of
monics, it is common to refer to a particular choice of a monic m : D � C as ‘a
subobject of C’. We will adopt this conventional abuse of language.
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Definition 1.8. (Subobject classifier) Let C be a category with a terminal object
1. A subobject classifier (or a truth-value object) of C is an object Ω together with
a morphism t : 1→ Ω such that for every monic m : D � C in C (subobject of
C) there is a unique morphism χm : C → Ω making the following diagram into a
pullback.

D C// m //

1
��

Ω
t //

χm

��

The morphism t is often called true or >, and the morphism χm is called the
characteristic morphism of m.

If 0 is the initial object of some category, and C is any object in the same
category, we will denote the unique map from 0 to C by 0C . If, in addition to a
terminal object and a subobject classifier, a category also has an initial object,
we define the map f : 1→ Ω, called false, as the unique morphism such that

0 1//

1
��

Ω
t //

f

��

is a pullback. That is, f = χ01 , the characteristic morphism of the unique map
from 0 to 1. The morphism false is sometimes denoted by ⊥.

In Set, the subobject classifier is the pair (2, t), where 2 = {0, 1} is the
two-element set, and t maps the one element set to 1 ∈ 2. The choice of the
image of the true map as 1 indicates that we think of 1 as being the truth-value
standing for ‘true’, and correspondingly we think of 0 as ‘false’, the image of the
map false. Since the subobjects in Set correspond to (isomorphism classes of)
subsets of C, the characteristic morphism χm is the characteristic function of the
image im m.

Definition 1.9. (Cartesian closed category) A category is said to be Cartesian
closed if it has products of any finite number objects, and exponentials of any
two objects.

Note that a Cartesian closed category necessarily has a terminal object, as it
is the empty product, that is, the product of no objects.

Definition 1.10. (Elementary topos) An elementary topos (or simply topos) is
a Cartesian closed category with finite limits and a subobject classifier.

Since product is a particular type of a limit, a category having all finite limits
already implies that it has all finite products. Hence a more economical list of
properties defining a topos without reference to Cartesian closed categories is as
follows. A topos is a category which has
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i. all finite limits,

ii. exponentials for any two objects, and

iii. a subobject classifier.

We can simplify this even further with the following result.

Proposition 1.11. A category has all finite limits if and only if it has all finite
products and equalisers.

The ‘only if’ direction is immediate, since products and equalisers are special
cases of limit. The ‘if’ direction is the Corollary 1 in section V.2 in Mac Lane [5,
p. 109], together with the observation that a terminal object is the product of no
objects.

Corollary 1.12. A category is a topos if and only if it has finite products, equalis-
ers, exponentials for any two objects, and a subobject classifier.

We should check that Set has all of these properties. We already saw how to
form equalisers of any two functions and exponentials of any two sets, we know
how to form a product of a finite number of sets, and we have constructed the
subobject classifier of sets. It then follows by the above corollary that Set is a
topos. Hence topos is indeed a generalisation of Set.

It follows from the definition of a topos that any topos has all the constructions
defined in this chapter. There is one further, rather non-obvious consequence of
the definition which we are going to need. Namely, every topos has all finite
colimits [3, p. 6]. This in particular implies that every topos has an initial object,
that is, the coproduct of no objects.



Chapter 2

Sheaves on Topological Spaces

Our first perspective on sheaves is to view them as a tool used to differentiate
between local and non-local properties of structures in a topological space. The
first goal of this chapter is to make the previous sentence precise. The second
goal is to express the category of sheaves as something purely topological, namely,
we will prove it is equivalent to the category of local homeomorphisms (étale
bundles).

The category of sheaves is defined as a subcategory of presheaves, which is
itself a functor category (a category whose objects are functors and morphisms
natural transformations), while the category of local homeomorphisms is a sub-
category of the slice category Top/X, where X is a topological space. Hence the
equivalence of these categories shows that the notion of a sheaf on a topological
space is natural in the sense that it corresponds to a continuous map into the
space, which is a local homeomorphism as defined in Section 2.3. In order to
get to this equivalence, we will need to define bundles over X, which is just a
shorthand name for a continuous map into X, as well as sections of a bundle,
which are just the right inverses of the map.

2.1 Presheaves and sheaves

A topology on a set X is most commonly specified by describing which subsets
of X are open. Furthermore, each open subset is a topological space in its own
right, inheriting the subspace topology. A map of topological spaces f : X → Y
can be restricted to any subset of X. In this way, f defines a family of maps
of topological spaces by restriction f |U : U → Y for each open subset U of
X. The notion of a presheaf generalises these observations. We further note
that this process can be reversed, that is, given a collection of open subsets Ui
of X and maps fi : Ui → Y , there is a unique map having the union of the
collection

⋃
i Ui as its domain such that its restriction to each Ui gives back fi.

This observation leads to the definition of a sheaf. While reading this section,
the reader is encouraged to return to the non-mathematical motivation involving
we began the Introduction with.

10
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In its full generality, an S-valued presheaf on a category C is a functor,

P : Cop → S.

In this work, however, we will be only considering Set-valued sheaves and presheaves
over a topological space X. More precisely, given a topological space X, let O(X)
denote the poset category of open subsets of X. A presheaf is then a functor

P : O(X)op → Set.

An element s ∈ P (V ) is called a section of P over V ⊆ X. Note that whenever
we have U, V ∈ O(X) with U ⊆ V , we have a map P (V ) → P (U) in Set.
We will denote the image of a section s ∈ P (V ) under this map s|U and call it
the restriction of s to U . The reason for this terminology will become apparent
from the following example, which we already referred to when motivating the
definition.

Example 2.1. Let X and Y be any topological spaces. For U ∈ O(X), let
P (U) = Y U denote the set of all functions from U to Y ; and for U ⊆ V and
f ∈ P (V ), let f |U be the actual restriction of f : V → Y to the subset U . Then
P so defined is a presheaf.

To illustrate that presheaf is indeed more general than the motivating exam-
ple, consider the following.

Example 2.2. (A constant presheaf) Let X be a topological space and let A be
a set. The constant presheaf with value A sends each open set of X to A. The
sections are just the elements of A, and the restriction is necessarily the identity
on A.

Note that from functoriality of P it follows that for U, V,W ∈ O(X) with
U ⊆ V ⊆ W and s ∈ P (W ), we have (s|V )|U = s|U , analogously to the case with
the actual restriction map. Hence a presheaf takes some structure living in the
topological space and isolates it into sets, remembering when it makes sense to
restrict the structure to a smaller set.

We are now ready to define a sheaf on a topological space.

Definition 2.3. (Sheaf) A presheaf P : O(X)op → Set is a sheaf if for any family
(Ui)i∈I of open subsets of X, and for any family (si)i∈I such that si ∈ P (Ui) for
each i ∈ I with the property

si|Ui∩Uj = sj|Ui∩Uj ∀i, j ∈ I, (2.4)

there exists a unique s ∈ P (
⋃
i Ui) such that

s|Ui = si ∀i ∈ I.

In words, whenever the elements in the family (si)i∈I are consistent in the
sense that they agree on the intersections Ui ∩ Uj, we require that they can be
‘pasted together’ to give an element s in the union P (

⋃
i Ui), which restricts
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back to the original elements si. This condition is often referred to as gluing.
Moreover, we require that there is precisely one way of doing this, that is, if there
is some element t ∈ P (

⋃
i Ui) such that t|Ui = si for each i ∈ I, then t = s. This

definition can be reformulated in a very concise way.

Proposition 2.5. A presheaf P on a topological space X is a sheaf if and only if
the following diagram is an equaliser for any family of open sets (Ui)i∈I , writing
U =

⋃
i Ui.

P (U) e //
p //

q
//

∏
i

P (Ui)
∏
i,j

P (Ui ∩ Uj) ,

where for s ∈ P (U) and for (si)i∈I ∈
∏

i P (Ui),

e(s) = (s|Ui)i∈I ,
p((si)i∈I) = (si|Ui∩Uj)i,j∈I ,
q((si)i∈I) = (sj|Ui∩Uj)i,j∈I .

Proof. First note that the definitions of e, p and q readily imply that pe = qe.
We thus need to show that e being universal with this property is equivalent to
P being a sheaf as in Definition 2.3. Let Z be a set and let f : Z →

∏
i P (Ui) be

a map such that pf = qf . For z ∈ Z, let us write

fz = ((fz)i)i∈I ∈
∏
i

P (Ui).

Note that pf = qf is equivalent to (fz)i|Ui∩Uj = (fz)j|Ui∩Uj for all i, j ∈ I. Now
P is a sheaf if and only if for any such Z and f , and any z ∈ Z, there exists a
unique s ∈ P (U) with s|Ui = (fz)i for each i ∈ I, or equivalently, es = fz (the
‘if’ direction follows by taking Z to be the one element set, and noting that f
then becomes a choice of an element of

∏
i P (Ui)). By uniqueness of such s, this

is equivalent to existence of a unique map f̄ : Z → P (U) with ef̄ = f , and hence
to universality of e.

A structure on a topological space forms a sheaf if the structure is in some
sense local (later we will in fact take this as the definition of ‘locality’). Since
functions are determined by their value at each point, the presheaf of Example
2.1 is in fact a sheaf. What this is saying is something rather trivial, namely,
if we have a family of functions defined on some pieces of the space Ui, and the
functions agree on all the intersections of these pieces, then there is exactly one
way to produce a function on the union of Ui’s agreeing with all the functions in
the family. To make this slightly less trivial, consider the following examples.

Example 2.6. Define the presheaf P as in Example 2.1, except that require all
functions to be continuous. That is, each open U ⊆ X is mapped to P (U) =
C(U, Y ), the set of continuous functions from U to Y . To see that the sheaf
condition is satisfied, let (fi : Ui → Y )i∈I be a family of continuous functions, for
Ui ⊆ X open, such that fi|Ui∩Uj = fj|Ui∩Uj for all i, j ∈ I. We have already noted
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that as a map of sets, there exists a unique function f :
⋃
i Ui → Y with f |Ui = fi

by simply defining f(u) = fi(u) whenever u ∈ Ui. Moreover, f is continuous, as
for any open V ⊆ Y we have f−1(V ) =

⋃
i f
−1
i (V ), which is open.

A similar argument shows that the functions still form a sheaf if we replace
‘continuous’ with ‘differentiable’, and the codomain Y with R, or some other space
where differentiation makes sense. This works since differentiability is defined
locally (i.e. in some neighbourhood of each point), if each fi is differentiable,
then so is f . We can restrict this even further.

Example 2.7. Define the presheaf P : O(R)op → Set by mapping any open
I ⊆ R to the set of all analytic functions from I to R. Then P is a sheaf. This
follows, again, since analyticity is defined locally around each point.

Analogously, functions with any property that is defined locally in this sense
will give rise to a sheaf. Some examples include n-times differentiable functions
for any positive integer n and complex analytic functions, as discussed in sections
1.1 and 2.2 in Tennison [9, p. 2, p. 17].

The previous examples have all been functions with some additional require-
ment. This prompts the question; is the sheaf condition so weak that functions
with any additional constraint will satisfy it? The following examples illustrate
that this is not the case.

Example 2.8. Let the presheaf P over R map an open set I to the set of all
bounded functions form I to R. We claim that P is not a sheaf. To prove this,
it is sufficient to provide a counterexample. Hence let In = (n − 1, n) for each
n ∈ N and define fn(x) = n for each x ∈ (n− 1, n) (see Figure 2.1). Now each fn
is a constant function and hence bounded. Moreover, the functions fn (trivially)
agree on the intersections of the In’s. However, if we define a function f from⋃
n In = R+ \N to R by letting f(x) = fn(x) whenever x ∈ In, it is not bounded,

as given any R ∈ R+ we can find an n ∈ N so that

f(x) = fn(x) = n > R.

Thus f /∈ P (
⋃
n In).

Example 2.9. Let P be the presheaf over R taking I ∈ O(R) to the set of
uniformly continuous functions from I to R. Note that the same counterexample
as in Example 2.8 works here, each section fi is uniformly continuous, while f
fails to be uniformly continuous. Here is another example. Let In = (n−1, n) and
Jn = (n− 1

2
, n + 1

2
) for each n ∈ N. Define the families of functions fn : In → R

by
fn(x) = (2n− 1)x− n(n− 1),

and gn : Jn → R by

gn(x) =


n2 if x ∈ N,
fn(x) if x ∈ Jn ∩ In,
fn+1(x) if x ∈ Jn ∩ In+1.
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Figure 2.1: The function in example 2.8 is not bounded.

Now
⋃
n(In ∪ Jn) = R+, and (fn, gn) agree on the intersections and are all

uniformly continuous. The functions fn and gn are so defined that the func-
tion f : R+ → R is obtained by connecting each point of the form (n, n2) to
(n+ 1, (n+ 1)2) by a straight line (see Figure 2.2). Such f is not uniformly con-
tinuous. To see this, take ε = 1, then for any δ > 0, choose an n ∈ N such that
n > 1

δ
+ 1

2
. Now letting x = n and y = n+ δ

2
, we have |y − x| < δ, but

|f(y)− f(x)| = f(y)− gn(x)

≥ fn(y)− gn(x) (as fi are increasing)

= (2n− 1)

(
n+

δ

2
− n

)
>

2

δ
· δ

2
= 1.

Hence for no δ is |f(y) − f(x)| bounded by ε = 1, and so f is not uniformly
continuous.

Sections of a presheaf do not necessarily need to be functions, as in the fol-
lowing example.

Example 2.10. Let X be a topological space. Let us fix some function g : X →
R. Define a presheaf P by mapping each open I ⊆ X to the set of all sequences
of functions on I converging uniformly to g|I . By restriction of sections in this
case we mean the restriction of each element (i.e. each function) in the sequence.
As one may anticipate, because of the uniformity, P is not a sheaf. The example
we provide to demonstrate this is very similar to the one for bounded functions in
Example 2.8. Take X = R and g to be identically equal to zero. Let In = (n−1, n)
for each n ∈ N and define a sequence (fni)i∈N by fni(x) = n

i
for x ∈ In. Hence each

fni is a sequence of constant functions starting at n and approaching zero, that is,
fni → g|In uniformly for each n. Now the sequence fi defined by fi(x) = fni(x)
for x ∈ In looks like the infinite steps in Figure 2.1, which approach zero as
i→∞. However, the convergence is not uniform, as the steps are unbounded.



Sheaves on Topological Spaces and their Logic 15

Figure 2.2: The function in example 2.9 is not uniformly continuous.

The previous example is particularly illuminating in highlighting the difference
between local and global properties. If we do not require the convergence to
be uniform but include the sequences which converge pointwise, P as defined
above becomes a sheaf. Hence pointwise convergence is a local property, whereas
uniform convergence a global one. The meaning of local and global can thus be
made precise using sheaves. We say that some structure is local when the presheaf
of that structure is in fact a sheaf, otherwise the structure is global. We can thus
conclude that continuity, differentiability and analyticity are local properties of
functions in this precise sense, while uniform continuity and boundedness are
global properties.

2.2 Bundles and sections

It turns out there is a way to map an arbitrary presheaf on X to a continu-
ous function into X. Likewise, an arbitrary continuous function gives rise to a
presheaf, which moreover turns out to be a sheaf. Combining these two results,
we get a procedure mapping each presheaf to a sheaf. Here we will construct
these maps in full detail.

For a topological space X, we write PSh(X) for the category whose objects
are all presheaves on X and morphisms are natural transformations of functors.
Similarly, we write Sh(X) for the full subcategory of PSh(X) of sheaves on X.

Definition 2.11. (Bundle) A bundle over a topological space X is an object in
the slice category Top/X.

Explicitly, a bundle over X is nothing but a continuous function p : Y → X,
where Y is a topological space. Hence the notion of a bundle is just a change of
terminology, instead of specifying a topological space and a continuous map from
that space to X, we focus on maps to X as objects. This shift of perspective
turns out to be so important that we denote the category of bundles over X by
Bund(X), where the morphisms are simply the morphisms in Top/X, hence
Bund(X) := Top/X. Note that idX is terminal in Bund(X). A bundle p is
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sometimes called projection; the reason for this terminology is explained by the
following definition.

Definition 2.12. (Section) A (global) section of a bundle p : Y → X is a mor-
phism s from idX to p in Bund(X), as in the diagram.

X Y
s //

X

idX

�� ��

p

That is, a section is a continuous function s : X → Y with ps = idX .

If we think of the topological space Y as living ‘above’ X, then s can be
thought of as a choice of a subspace of Y . Take, for example, X to be the unit
circle and Y the cylinder of unit radius. Then the image of s is exactly a cross-
section of the cylinder, so that p projects it back to the circle, as in Figure 2.3.
For this reason, sections of a bundle p are sometimes called cross-sections (e.g. in
[6, ch. II]).

Figure 2.3: The bundle p projects the cylinder onto the the circle; s is one of its
sections.

It is useful to allow sections to be defined on some open subset of X only. In
detail, if U ⊆ X is open, the bundle p : Y → X restricts to a bundle

pU : p−1(U)→ U.

A section of pU (or a section of p over U) is then a morphism s from i : U ↪→ X
(inclusion) to p in Bund(X), that is, a continuous function s : U → Y such that
ps = i. A section of pU is called local, however, we will not explicitly distinguish
between local and global sections unless there is a risk of confusion.
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Recall that elements of a presheaf s ∈ P (U) are also called sections (of P over
U). We will next justify this clash of terminology. Given a bundle p : Y → X,
we can obtain a sheaf as follows. For an open subset U ⊆ X, let Γp(U) be the set
of all sections of pU . The restriction Γp(U) → Γp(V ) for V ⊆ U is given by the
usual restriction of functions. Hence Γp defines a presheaf over X whose sections
over U are exactly the sections of the bundle p over U .

Lemma 2.13. The presheaf Γp is a sheaf for all bundles p ∈ Bund(X), called
the sheaf of sections of p.

Proof. If U is an open subset of X, the only conditions defining a section s of
p over U are continuity and ps = iU (writing iU for the inclusion U ↪→ X). It
follows that for any family (si ∈ ΓpUi)i∈I where si’s agree on the intersections of
Ui’s, the unique function s :

⋃
i Ui → Y , defined by x 7→ si(x) whenever x ∈ Ui,

is continuous and ps = i⋃Ui . Thus, Γp is indeed a sheaf.

Moreover, the assignment Γp is functorial in p.

Lemma 2.14. The assignment to each bundle of its sheaf of sections is a functor

Γ : Bund(X)→ Sh(X). (2.15)

Proof. Any map k : p→ p′ of bundles in Bund(X) induces a map of sections

Γk : Γp(U)→ Γp′(U)

by Γk(s) = ks natural in U , that is, the diagram,

Γp(U) Γp′(U)Γk //

Γp(V )
��

Γp′(V )Γk //
��

where the vertical maps are the restrictions, commutes whenever V ⊆ U . Hence
Γk is a morphism of sheaves (i.e. a natural transformation); we have thus indeed
defined a functor sending each bundle to its sheaf of sections.

We immediately ask if we can reverse this process, that is, does there exist
a functor sending sheaves to bundles? This indeed turns out to be the case,
although the construction required is not quite as straightforward as that for Γ.
To this end, we will need to define a germ of a section, which, intuitively, captures
the idea of two sections being ‘locally the same’.

Let P be a presheaf over X and let x be a point in X. If U and V are some
open neighbourhoods of x, we say that the sections s ∈ P (U) and t ∈ P (V )
have the same germ at x if there exists an open neighbourhood W of x such
that W ⊆ U ∩ V and s|W = t|W ∈ P (W ), in which case we write sGxt. The
following example illustrates that, for the presheaf of functions, it need not to be
the case that the functions f and g have the same germ at x if they agree on x,
the converse is, however, manifestly true.
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Example 2.16. Consider the presheaf of functions from R to R. Let g be the
function which is identically zero, and let f(x) = 0 for x ≤ 0 and f(x) = 1 for
x > 0. Then f and g have the same germ at x for any x < 0, but not at x = 0,
as any open neighbourhood of 0 contains points where f 6= g.

Lemma 2.17. The relation sGxt is an equivalence relation on sections over open
neighbourhoods of x ∈ X.

Proof. Reflexivity and symmetry are clear. To see transitivity, suppose we have
s ∈ P (U) and t ∈ P (V ) and y ∈ P (Z) such that sGxt and tGxy. Then there are
open neighbourhoods of x, say W and W ′, with W ⊆ U ∩ V and W ′ ⊆ V ∩ Z so
that s|W = t|W and t|W ′ = y|W ′ . But then W ∩W ′ is open, contains x and is a
subset of U ∩ Z. It then follows by functoriality of the restriction map that

s|W∩W ′ = (s|W )|W∩W ′ = (t|W )|W∩W ′ = (t|W ′)|W∩W ′ = (y|W ′)|W∩W ′ = y|W∩W ′ ,

whence sGxy.

We can thus make the following definitions.

Definition 2.18. (Germ) For a presheaf P over X, let x ∈ X and U an open
neighbourhood of x. For a section s ∈ P (U), the germ of s at x is the equivalence
class of s under the relation Gx.

Following the notation in Mac Lane and Moerdijk [6, p. 83], we denote the
germ of s at x by germxs.

Definition 2.19. (Stalk) Given a presheaf P on X, let the stalk of P at x,
denoted by Px, be the set of all germs at x. That is,

Px = {germxs : s ∈ P (U), where U ⊆ X open and x ∈ U}.

For a presheaf P over X, we can therefore consider the disjoint union of its
stalks

ΛP :=
∐
x∈X

Px =
∐
x∈X

{germxs : s ∈ P (U), where U ⊆ X open and x ∈ U}.

Define a function p : ΛP → X by p(germxs) = x. That is, p returns or projects
any germ at x back to x. Next, any section s ∈ P (U) (over an open subset
U) induces a function ṡ : U → ΛP by ṡ(x) = germxs. Note that we now have
pṡ = iU , which makes p look like a bundle over X together with its sections ṡ.
However, presently these are just maps of sets; it thus remains to topologise ΛP

in a suitable way making p and all the ṡ continuous. This is achieved by taking
the images ṡ(U) as the base of open sets. This is to say that W ⊆ ΛP is open if
and only if W =

⋃
t∈Σ ṫ(V ), where Σ ⊆ P (V ) for some open V ⊆ X.

To see that ṡ is continuous for each s ∈ P (U), consider the preimage of an
open W ⊆ ΛP .

ṡ−1(W ) = ṡ−1

(⋃
t∈Σ

ṫ(V )

)
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whence

x ∈ ṡ−1(W ) ⇐⇒ ṡ(x) = germxs ∈ ṫ(V ) for some V ∈ O(X) and t ∈ P (V )

⇐⇒ germxs = germyt for some y ∈ V
⇐⇒ germxs = germxt

⇐⇒ x ∈ {z ∈ U ∩ V : germzs = germzt},

which is open by the definition of a germ.

Similarly, p is continuous, as for any open U ⊆ X,

p−1(U) =
∐
x∈U

Px =
⋃

s∈P (U)

ṡ(U),

which is open.

Hence for any presheaf P over X, we can assign a bundle p : ΛP → X as
described above. Furthermore, this process is functorial.

Lemma 2.20. The assignment of the bundle p to a presheaf P is a functor from
PSh(X) to Bund(X), denoted by

Λ : PSh(X)→ Bund(X). (2.21)

Proof. Any natural transformation of presheaves α : P → Q induces maps αx :
Px → Qx by αx(germxs) = germxαU(s) for each s ∈ P (U) and U an open
neighbourhood of x.

We need to check that hx is well-defined, that is, independent of the choice of
the open neighbourhood U ; this follows from naturality of α. In detail, if V ⊆ U
are open, naturality of α amounts to commutativity of

P (U) Q(U)
αU //

P (V )
��

Q(V )
αV //

��

where vertical maps are the restrictions. Now if germxs = germxt for s ∈ P (U)
and t ∈ P (V ), then s|W = t|W for some W ⊆ U ∩ V , consequently, αW (s|W ) =
αW (t|W ). Naturality then implies that αU(s)|W = αV (t)|W and so germxαU(s) =
germxαV (t), whence αx(germxs) = αx(germxt).

The disjoint union of maps αx : Px → Qx therefore gives a map Λα : ΛP → ΛQ.
Continuity of this map follows from the fact that the preimage of ṫ(x) = germxt ∈
Qx under the map αx is the set

{ṡ(x) = germxs : αU(s) = t, where s ∈ P (U)}.

Taking the appropriate unions yields that open sets are preserved under the
preimage of Λα. This thus makes Λα into a morphism from p : ΛP → X to
q : ΛQ → X in Bund(X).
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Note that if we compose Λ as in (2.21) with Γ as in (2.15), we get

ΓΛ : PSh(X)→ Sh(X).

This is a functor turning every presheaf into a sheaf, it is known as the sheafifi-
cation functor or the associated sheaf functor.

Example 2.22. Sheafification of the constant presheaf with value A (Example
2.2) is the sheaf assigning to each open set U the continuous maps from U to A,
where A is viewed as a topological space with the discrete topology. To see this,
notice that the germ of a ∈ A at x ∈ X is just the singleton {a}. Thus the space
ΛP is A with every singleton being open, that is, with the discrete topology.

2.3 Sheaves ‘are’ étale bundles

In the previous section we noted that ΓΛ sheafifies each presheaf. Here we make
a similar observation for the reverse composition ΛΓ. This will require the notion
of an étale bundle, and will eventually lead to characterisation of sheaves as these
special kind of bundles.

Since Sh(X) is a subcategory of PSh(X), the functor Γ : Bund(X)→ Sh(X)
as constructed in the previous section can be regarded as a functor from Bund(X)
to PSh(X). We thus arrive at an important result.

Theorem 2.23. Let X be a topological space. The functors as constructed in
Section 2.2

Λ : PSh(X) � Bund(X) : Γ

are adjoint (left adjoint on the left).

Proof. For a presheaf P and a bundle p, we need to exhibit natural transforma-
tions

ηP : P → ΓΛP

εp : ΛΓp → p,

satisfying the usual triangle identities. This will establish the claimed adjunction;
η and ε being its unit and counit.

We begin with η. For a presheaf P , the sheafification ΓΛP is the sheaf of
sections of the bundle p : ΛP → X. Hence given an open set U ⊆ X, we need to
define a map

ηP (U) : P (U)→ ΓΛP (U)

taking each section of (the presheaf) P over U to a section of (the bundle) p over
U . We only know one way to do this, hence define ηP (U)(s) = ṡ.

This assignment of ṡ to each s ∈ P (U) is natural in U ; this amounts to the

statement that ˙(s|V ) = ṡ|V for each open V ⊆ U , which is in turn equivalent to
germxs|V = germxs for all elements x ∈ V and for each open subset V . The last
statement is manifestly true.

Assigning such map for each open U ⊆ X yields the desired natural transfor-
mation ηP : P → ΓΛP . Naturality of η is the statement that ˙(αU(s)) = ΓΛαU(ṡ)
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for any morphism of presheaves α : P → Q, any open set U ∈ O(X) and any
section s ∈ P (U) and it follows by unpacking the definitions.

For a bundle p : Y → X, the corresponding bundle ΛΓp : ΛΓp → X is the
map germxs 7→ x for a section s of p over some open U and x ∈ U . We thus need
to define a continuous map εp from ΛΓp to Y such that the diagram

ΛΓp Y
εp //

X

ΛΓp

�� ��

p

commutes. Again, we only know one way to get an element of Y from germxs ∈
ΛΓp , hence define εp(germxs) = s(x). This is well-defined, as we already noted
when defining the notion of a germ that sections of p (which are continuous maps)
s and t having the same germ at x implies that s(x) = t(x).

Since s is a section of p, the diagram above evidently commutes. It thus
remains to check that εp is continuous. This follows by noting that for any open
set V ⊆ Y , the preimage s−1(V ) is open for any section s of p, hence the set
ṡ(s−1(V )) ∈ ΛΓp is open. The preimage ε−1

p (V ) is now the union of these sets
over all sections of p, consequently, the preimage is open.

Finally, we easily verify that the triangle identities

ΛP ΛΓΛP
ΛηP //

ΛP

idΛP

$$

εΛP

��

Γp ΓΛΓp
ηΓp //

Γp

idΓp

$$

Γεp

��

(2.24)

hold. The left diagram commutes, as is shown by taking (germxs) ∈ ΛP and
observing that the effect of the maps in the diagram is germxs 7→ germxṡ 7→
ṡ(x) = germxs for each x ∈ X, and section s over some open neighbourhood of
x. Similarly, the right diagram commutes as s 7→ ṡ 7→ s for any section s of p.
Hence η and ε are indeed the unit and the counit of the adjunction.

We have already noticed that the functor ΓΛ sheafifies each presheaf, thus
sending PSh(X) to its full subcategory Sh(X). We thus ask whether ΛΓ sends
bundles to some special kind of bundles. This turns indeed out to be the case.

Definition 2.25. (Étale bundle) A bundle p : Y → X is étale if p is a local
homeomorphism, that is, every y ∈ Y has an open neighbourhood V such that
pV is open in X and the restriction

p|V : V → pV

is a homeomorphism.

Next proposition gives us some intuition about what it means for a bundle to
be étale. It will also be useful later, as the last part of the proof of Theorem 2.27
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relies crucially on the proposition. This is part of Proposition 1 in [6, II.6 p. 88].
There, however, the proof is omitted; we thus give it here.

Proposition 2.26. Let p : Y → X be an étale bundle. Then p and all sections
(both local and global) of p are open maps. For each y ∈ Y , there is an open
subset U of X and at least one section s : U → Y of p such that y ∈ s(U). If
s : U → Y and t : V → Y are sections of p over open subsets U and V , then the
set

W = {x ∈ U ∩ V : s(x) = t(x)} ⊆ X

is open.

Proof. Let V ⊆ Y , and suppose V is open. For each y ∈ V , let Vy be an open
neighbourhood such that p(Vy) is open and p|Vy : Vy → p(Vy) is a homeomor-
phism. Since V is open, Vy ∩ V is open and, since p|Vy is a homeomorphism, so
is its image

p|Vy(Vy ∩ V ) ⊆ p(V ).

Hence each point p(y) ∈ p(V ) has an open neighbourhood contained in p(V ),
that is, p(V ) is open. Thus p is indeed an open map.

To see that sections are open maps, let U be an open subset of an open E ⊆ X
and s : E → Y a section. For each y ∈ sU , let Vy and p|Vy be as before. By
continuity of s, the set s−1(Vy) ∩ U is open. Moreover, since ps is the inclusion,
we have

s−1(Vy) ∩ U = ps(s−1(Vy) ∩ U) ⊆ p(ss−1(Vy) ∩ sU) ⊆ p(Vy ∩ sU),

where the first containment follows by properties of intersections, and the second
one by properties of preimage. Since p(Vy ∩ sU) = p|Vy(Vy ∩ sU) and p|Vy is a
homeomorphism, we get

p|−1
Vy

(s−1(Vy) ∩ U) ⊆ Vy ∩ sU ⊆ sU.

It is straightforward to verify that y ∈ p|−1
Vy

(s−1(Vy) ∩ U) for each y ∈ sU . Hence
we have found an open neighbourhood of each y ∈ sU , whence sU is open.

For any y ∈ Y , let Vy be an open neighbourhood such that p(Vy) is open and
p|Vy : Vy → p(Vy) is a homeomorphism. The section that is always guaranteed to
exist is the inverse of the homeomorphism, s = p|−1

Vy
: p(Vy)→ Vy.

Let W be the subset of X on which the sections s and t agree. Since W =
ps(W ) = pt(W ) and p is an open map, it is sufficient to show that s(W ) = t(W )
is open in Y . Again, for each y ∈ s(W ), let Vy be an open neighbourhood such
that p(Vy) is open. Since both s and t are open maps, sp(Vy) ∩ tp(Vy) is open in
Y , moreover, it is contained in s(W ). To see this, note that we can rewrite this
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set as follows.

z ∈ sp(Vy) ∩ tp(Vy) ⇐⇒ ∃x, x′ ∈ p(Vy) such that s(x) = t(x′) = z

⇐⇒ ∃x ∈ p(Vy) such that s(x) = t(x) = z

(as s(x) = t(x′) implies ps(x) = x = x′ = pt(x′))

⇐⇒ ∃x ∈ p(Vy) ∩W such that s(x) = z

⇐⇒ z ∈ s (p(Vy) ∩W ) ⊆ s(W ).

Since y ∈ s (p(Vy) ∩W ), we have found an open neighbourhood contained in
s(W ) for each y ∈ s(W ), showing that s(W ) is open.

We denote the full subcategory of Bund(X) consisting of étale bundles by
Et(X). In fact, for any presheaf P over X, the bundle

ΛP = p : ΛP → X

is étale. To see this, let germxs ∈ ΛP . Then there is an open U ∈ X such that
s ∈ P (U) and x ∈ U . Hence ṡ(U) is an open neighbourhood of germxs such that
pṡ(U) = U , and ṡ is the left inverse for p restricted to ṡU . Since it is also the
right inverse by construction, the restriction of p is a homeomorphism, and so p
is indeed étale. Hence the functor

ΛΓ : Bund(X)→ Et(X)

can be seen as ‘étalification’ sending each bundle to an étale bundle. The simi-
larity of this to the sheafification functor points to the main result of the chapter.

Theorem 2.27. Let X be a topological space. The adjunction in Theorem 2.23
restricts to an equivalence of categories

Sh(X) � Et(X).

Hence sheaves over X are (in the equivalence of categories sense) local home-
omorphisms over X. This further reinforces our intuition that sheaves are cap-
turing the notion of locality. In order to prove Theorem 2.27, we will need the
following general result for an adjunction.

Lemma 2.28. Let P and B be categories and

Λ : P � B : Γ

an adjunction (left adjoint on the left) with unit η and counit ε. Let P0 be the full
subcategory of P containing those objects P ∈ P for which ηP is an isomorphism,
and dually, let B0 contain those B ∈ B for which εB is an isomorphism. Then
the adjunction (Λ,Γ, η, ε) restricts to an equivalence of P0 and B0.

Proof. The only nontrivial part of the proof is to show that for any object P in
P0 we have ΛP ∈ B0, and similarly that B ∈ B0 implies ΓB ∈ P0. Hence let
P ∈ P0 so that ηP : P → ΓΛP is an isomorphism. From functoriality of Λ, it
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follows that ΛηP is an isomorphism. Then, by the left triangle identity in (2.24),
εΛP ◦ ΛηP = idΛP implying εΛP = Λη−1

P , which being inverse of an isomorphism
is itself an isomorphism. Hence ΛP is indeed an object of B0. The result for
B ∈ B0 follows by duality. Since natural transformations restrict componentwise,
this completes the proof.

We now have all the ingredients to prove the equivalence of sheaves and étale
bundles asserted in Theorem 2.27.

Proof (of Theorem 2.27). We wish to use Lemma 2.28. It thus suffices to show
that a presheaf P is a sheaf if and only if ηP : P → ΓΛP is an isomorphism,
and similarly, a bundle p : Y → X is étale if and only if εp : ΛΓp → p is an
isomorphism.

First, let P be a presheaf such that ηP is an isomorphism. Let (Ui)i∈I be
a family of open sets and write U =

⋃
i Ui. Now ΓΛP is a sheaf, hence, by

Proposition 2.5, the top row in the diagram

ΓΛP (U) e //
r //

q
//

∏
i

ΓΛP (Ui)
∏
i,j

ΓΛP (Ui ∩ Uj)

P (U) e′ //
r′ //

q′
//

∏
i

P (Ui)
∏
i,j

P (Ui ∩ Uj)

ηP (U)

OO

(ηP (Ui))i∈I

OO

(
ηP (Ui∩Uj)

)
i,j∈I

OO

is an equaliser. Here the horizontal maps are the relevant products of restrictions
as defined in Proposition 2.5, and the vertical maps are products of components
of ηP . Since ηP is an isomorphism, each component in each of the vertical maps
is invertible, and so the vertical maps are invertible. For clarity, we will write
ηi for

(
ηP (Ui)

)
i∈I and ηij for

(
ηP (Ui∩Uj)

)
i,j∈I . By naturality of ηP , the square on

the left commutes, and likewise, the squares on the right commute via upper
and lower paths, that is, rηi = ηijr

′ and qηi = ηijq
′. In order to show that P

is a sheaf, we need to show that the bottom row is an equaliser. Hence suppose
that f : Z →

∏
i

P (Ui) is a map such that r′f = q′f . It then follows that

ηijr
′f = ηijq

′f , whence rηif = qηif . Then, since the top row is an equaliser,
there exists a unique map g : Z → ΓΛP (U) such that eg = ηif . Hence define
f̂ := η−1

P (U) ◦ g. We then have

e′f̂ = e′ ◦ η−1
P (U) ◦ g = η−1

i ◦ e ◦ g = η−1
i ◦ ηi ◦ f = f.

Moreover, f̂ is unique with this property; if we suppose that e′f ′ = f for some
f ′, then eηP (U)f

′ = ηie
′f ′ = ηif , implying ηP (U)f

′ = g by uniqueness of g, and so

f ′ = η−1
P (U) ◦ g = f̂ . Thus the bottom row is indeed an equaliser.

Conversely, suppose that P is a sheaf. We wish to show that ηP (U) is an
isomorphism for each open U ⊆ X, which is to say that it is a bijection. For
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injectivity, suppose that

ηP (U)(s) = ṡ = ṫ = ηP (U)(t)

for some s, t ∈ P (U). That is, germxs = germxt for all x ∈ U . By the definition
of a germ, it follows that each x ∈ U has an open neighbourhood Ux such that
s|Ux = t|Ux . We thus have

⋃
x Ux = U and s|Ux agree on the intersections in the

sense of condition (2.4). Hence, since P is a sheaf, it follows by Definition 2.3
that there is a unique ŝ ∈ P (U) such that ŝ|Ux = s|Ux = t|Ux for all x ∈ U . Since
both s and t satisfy this, it follows by uniqueness that s = ŝ = t.

Similarly, using the definition of a sheaf, one can show that ηP is surjective,
that is, for any section h : U → ΛP of ΛP (where U ⊆ X open) there is an
s ∈ P (U) such that ṡ = h. For a proof, see [6, II.5 p. 86]. This completes the
proof that P is a sheaf if and only if ηP is an isomorphism.

Next, let p : Y → X be a bundle such that εp is an isomorphism. That
is, εp : ΛΓP → Y is a homeomorphism, and so is its inverse. In particular, ε−1

p

is a local homeomorphism. The fact that p is étale follows immediately, as we
have ΛΓp = pεp, implying p = ΛΓp ◦ ε−1

p . Since ΛΓp and ε−1
p are both local

homeomorphisms, so is p.
Conversely, suppose that p : Y → X is étale. By Proposition 2.26, for each

point y ∈ Y there is a section s : U → Y such that y ∈ sU . We can thus define
θp : Y → ΛΓp by θp(y) = germp(y)s. This map is well-defined, that is, independent
of the choice of section s. This follows again from Proposition 2.26; if t : V → Y
is another section such that y ∈ tV , then s(x) = t(x) = y for x = p(y) ∈ U ∩ V ,
and the set on which s and t agree is open. Hence, s and t have the same germ
at x = p(y), that is, germp(y)s = germp(y)t.

The map θp is evidently a two-sided inverse for εp. It thus remains to show that
θp is continuous, or equivalently, that εp is an open map. This follows quickly by
noting that if Σ =

⋃
s∈S ṡU is an open set in ΛΓp for some collection S of sections

of p, then

εp (Σ) =
⋃
s

εpṡU =
⋃
s

sU,

which is open, since each s is an open map, once more, by Proposition 2.26. Thus
εp is indeed an isomorphism.



Chapter 3

Connections with Logic

We mentioned in the beginning of Section 1.2 that we view a topos as a general-
isation of the category Set. One important property of a set is that its subsets
have some sort of ‘logical operations’. We say that an element is in the union of
two sets if it is in one or in the other, an element is in the intersection if it is
in one set and in the other one, an element is in the complement of a set if it is
not in the set. The notion of a Boolean algebra defined in Section 3.1 makes this
precise.

It turns out that the fact that we can use classical logic in defining union,
intersection and complement is very special to the category of sets (namely, it is
a Boolean topos as defined in Section 3.3). In a general topos, the corresponding
‘algebra of subobjects’ is given by a Heyting algebra, whereof Boolean algebra
is a special case. The first two sections in this chapter will define the Heyting
algebra of subobjects in an arbitrary topos. The final section will connect this to
our discussion of sheaves; we will see that the category of sheaves is a topos, and
that the algebra of subobjects is given by the poset of open sets of the underlying
topological space.

3.1 Boolean and Heyting algebras

Boolean algebra provides a model for a classical logic, in the sense that the law
of double negation, or equivalently the law of excluded middle is valid in any
such algebra. The simplest example is given by the classical two-valued logic,
each statement is either true or false, and the binary operations ‘and’, ‘or’ and
‘implication’, as well as unary operation ‘negation’ are defined by their usual
truth tables. Heyting algebra generalises this to model an intuitionistic logic, in
which the law of double negation is not valid.

Both Boolean and Heyting algebras can be defined purely equationally; we
have, however, chosen an approach which uses a poset structure to define logi-
cal operations, as it requires fewer definitions and exposes connections between
concepts more explicitly.

Definition 3.1. Let (P,≤) be a poset, and let x, y ∈ P . An infimum (or meet)
of x and y is an element of P , denoted by x ∧ y, such that

i. x ∧ y ≤ x and x ∧ y ≤ y,

26
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ii. z ≤ x and z ≤ y implies z ≤ x ∧ y for all z ∈ L.

Dually, a supremum (or join) of x and y is an element of P , denoted by x ∨ y,
such that

i. x ≤ x ∨ y and y ≤ x ∨ y,

ii. x ≤ z and y ≤ z implies x ∨ y ≤ z for all z ∈ L.

Infima and suprema are not guaranteed to exist for an arbitrary poset. How-
ever, if they do exist, they are unique. The easiest way to see this is to notice that
infimum and supremum are the product and the coproduct in the poset viewed
as a category (defined after Definition 1.7). Indeed, the definition of a lattice
infimum states that whenever there are maps from z to both x and y, they factor
(uniquely, as there is at most one map) through x∧ y. Hence infimum is the cat-
egorical product of x and y. Dually, supremum is the coproduct. Since products
and coproducts are unique up to an isomorphism, and the only isomorphisms
is a poset are the identities, it follows that supremum and infimum are unique
elements of P if they exist.

A poset which has all suprema and all infima is so important it has a special
name.

Definition 3.2. (Lattice) A lattice is a poset (L,≤) such that any two elements
x, y ∈ L have the infimum denoted x ∧ y and the supremum x ∨ y.

We will simply write L for the lattice with underlying poset (L,≤). A concise
way to define a lattice is to require the poset category to have all binary products
and coproducts.

Two immediate consequences of the definition of infimum (or the fact that it
is the product) are

x ∧ y = y ∧ x, and

(x ∧ y) ∧ z = x ∧ (y ∧ z)

for all x, y, z ∈ L, that is, ∧ is symmetric and associative. We can thus interchange
the order of the elements and drop the brackets without ambiguity. The same is,
of course, also true for supremum.

A lattice L is said to be bounded if there are elements 0, 1 ∈ L such that
0 ≤ x ≤ 1 for all x ∈ L. Hence 0 and 1 are initial and terminal objects of L,
respectively. The initial object 0 is called the bottom object of L and 1 corre-
spondingly the top object. It follows from the definitions in a straightforward
manner that the following identities hold in any bounded lattice.

x ∧ x = x = x ∨ x,
1 ∧ x = x = 0 ∨ x, (3.3)

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x.

For example, the first identity on the last line follows by noting that x ≤ x and
x ≤ y ∨ x and so x ≤ x ∧ (y ∨ x) ≤ x. Moreover, given the equations (3.3), we
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can recover the partial order on L by noticing that x ≤ y if and only if x∧ y = x
(or equivalently, x ∨ y = y). Hence we could equivalently define a bounded
lattice as a set L having two special elements 0, 1 ∈ L together with associative
and symmetric binary operations ∧,∨ : L × L → L such that the equations
(3.3) hold; this induces a partial order on L by the observed equivalence. The
interpretation of ∧ and ∨ as infimum and supremum then follows by proving the
properties of Definition 3.2. For example, x ∧ y ≤ x follows from

x ∧ y ∧ x = x ∧ x ∧ y = x ∧ y,

and the second property of supremum follows since x ∨ z = z and y ∨ z = z
implies

(x ∨ y) ∨ z = x ∨ (y ∨ z) = x ∨ z = z.

A lattice is said to be distributive if either of the following equivalent identities
holds for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In order to see the equivalence of these, one simply expands the right-hand sides
using the other equation, the expression then simplifies using the identities 3.3.
For instance, let us assume the second equation, the right-hand side of the first
one then expands to

(x ∧ y) ∨ (x ∧ z) = ((x ∧ y) ∨ x) ∧ ((x ∧ y) ∨ z)

= x ∧ ((x ∨ z) ∧ (y ∨ z))

= (x ∧ (x ∨ z)) ∧ (y ∨ z)

= x ∧ (y ∨ z),

as required.

Definition 3.4. (Heyting algebra) A Heyting algebra is a bounded lattice H such
that for any pair of elements x, y ∈ H there is an exponential yx, written x⇒ y.

Using the terminology introduced in Chapter 1, a Heyting algebra H is then
a poset category which is Cartesian closed and has all finite coproducts. The
initial object 0 can then be seen as the empty coproduct, analogously to the
terminal object being the empty product. Unpacking the definition of exponential
(Definition 1.2), we get that

z ∧ x ≤ y if and only if z ≤ x⇒ y (3.5)

for all z ∈ H. The ‘if’ direction follows since z ≤ x⇒ y implies

z ∧ x ≤ (x⇒ y) ∧ x ≤ y,

where the last ‘inequality’ is just the evaluation morphism of the exponential
as in Definition 1.2. The exponential ⇒ is called implication and in an algebra
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describing classical logic it will turn out to have its usual meaning.

Proposition 3.6. Any Heyting algebra is a distributive lattice.

Proof. We will show that

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z ∈ H. Let u ∈ H, we then have the following sequence of equivalent
statements, following the proof in Bell [1, p. 4].

x ∧ (y ∨ z) ≤ u iff y ∨ z ≤ x⇒ u

iff y ≤ x⇒ u and z ≤ x⇒ u

iff y ∧ x ≤ u and z ∧ x ≤ u

iff (y ∧ x) ∨ (z ∧ x) ≤ u.

Then first taking u = x∧(y∨z) and then u = (y∧x)∨(z∧x) gives the result.

Since a Heyting algebra is supposed to capture some kind of propositional
logic, we would like it to have a negation operation. For an element x in a
Heyting algebra H, we thus define its negation or pseudocomplement as

¬x := (x⇒ 0).

Hence, the ‘negation of x’ means ‘x implies falsity’ or ‘x implies absurdity’ [6,
p. 53]. To get a better idea of the definition, we can reformulate this using (3.5).
For z ∈ H we have

z ≤ ¬x if and only if z ∧ x = 0. (3.7)

If we think of the elements in a Heyting algebra entailing the ones above them,
this tells us that z entails the pseudocomplement of x if and only if z and x are
disjoint in the sense that no element apart from zero entails both of them. From
this characterisation of pseudocomplements it immediately follows that ¬0 = 1,
¬1 = 0 and ¬x∧x = 0. Note, however, that we do not necessarily have ¬x∨x = 1.
The last identity is known as the law of excluded middle, and if it holds, we say
that ¬x is the complement of x.

Importantly, in general it is not the case that ¬¬x = x (see Example 3.8
below), which is to say that the law of double negation does not hold. We do
have, however, that x ≤ ¬¬x since x ∧ ¬x = 0. Interestingly, it turns out that
the law of double negation is equivalent to the law of excluded middle, as proved
in Proposition 3.11.

The canonical example of a Heyting algebra is the so called ‘algebra of opens’.

Example 3.8. (Algebra of opens) Let X be a topological space. The open sets
O(X) of X ordered by inclusion form a Heyting algebra, with infimum being the
intersection and supremum the union of two sets. The bottom object is 0 = ∅
and the top one 1 = X. By (3.5) it follows that the implication U ⇒ V is the
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interior of U c ∪ V . Then, taking V = ∅, it follows that the pseudocomplement is
given by the interior of the complement. In general, the law of double negation
does not hold in O(X). Take, for example X = (−1, 1) as a subset of R, and take
U = X \ {0}. Then ¬¬U = X 6= U .

The same example demonstrates that one of the De Morgan’s laws (see Propo-
sition 3.9) does not hold in a general Heyting algebra. Take V = (−1, 0) and
W = (0, 1). Then ¬(V ∩W ) = X, but ¬V ∪ ¬W = U 6= X.

Proposition 3.9. (De Morgan’s laws) In any Heyting algebra H, the following
holds for all x, y ∈ H,

¬(x ∨ y) = ¬x ∧ ¬y,

¬x ∨ ¬y ≤ ¬(x ∧ y).

Proof. For z ∈ H, we have the following sequence of equivalent statements,

z ≤ ¬(x ∨ y) ⇐⇒ z ∧ (x ∨ y) = 0

⇐⇒ (z ∧ x) ∨ (z ∧ y) = 0

⇐⇒ z ∧ x = 0 and z ∧ y = 0

⇐⇒ z ≤ ¬x and z ≤ ¬y
⇐⇒ z ≤ ¬x ∧ ¬y,

from which the first identity follows. For the second one, it is equivalent to show
that (¬x ∨ ¬y) ∧ (x ∧ y) = 0. Thus compute

(¬x ∨ ¬y) ∧ (x ∧ y) = (¬x ∧ x ∧ y) ∨ (¬y ∧ y ∧ x) = 0 ∨ 0 = 0,

as required.

Remark 3.10. The usual De Morgan’s law ¬(x ∧ y) = ¬x ∨ ¬y does not hold
in a general Heyting algebra. Only the containment as in Proposition 3.9 is true
in general. The failure of the opposite containment is demonstrated by Example
3.8.

For an algebra to model classical logic, we would certainly want both De
Morgan’s laws to hold and to have complements (not just pseudocomplements)
for each element. This motivates the next proposition and the definition following
it.

Proposition 3.11. In any Heyting algebra H, the following are equivalent.

i. ¬¬x = x for all x ∈ H (law of double negation),

ii. ¬x ∨ x = 1 for all x ∈ H (law of excluded middle).

Proof. First suppose that (i) holds. Then, by Proposition 3.9,

¬(x ∨ ¬x) = ¬x ∧ ¬¬x
= ¬x ∧ x
= 0.
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Hence ¬¬(x ∨ ¬x) = ¬0, implying x ∨ ¬x = 1.
Now suppose that (ii) holds. We already observed that x ≤ ¬¬x in any Heyt-

ing algebra; to show that the law of double negation holds it therefore suffices to
show that ¬¬x ≤ x. For a z ∈ H, we have the following sequence of implications,

z ≤ ¬¬x =⇒ z ∧ ¬x = 0

=⇒ (z ∧ ¬x) ∨ x = x

=⇒ (z ∨ x) ∧ (¬x ∨ x) = x

=⇒ z ∨ x = x

=⇒ z ≤ x,

from which it follows that ¬¬x ≤ x.

Definition 3.12. (Boolean algebra) A Boolean algebra is a Heyting algebra such
that one of the equivalent conditions in Proposition 3.11 holds.

Hence in a Boolean algebra all pseudocomplements are complements and nega-
tion is an involution. Furthermore, in any Boolean algebra B, the second De
Morgan’s law holds, which is to say that ¬(x∧ y) = ¬x∨¬y for all x, y ∈ B. To
see this, observe that for a z ∈ B we have the following sequence of equivalent
statements,

z ≤ ¬(x ∧ y) ⇐⇒ z ∧ x ∧ y = 0

⇐⇒ z ∧ (¬¬x ∧ ¬¬y) = 0

⇐⇒ z ∧ ¬(¬x ∨ ¬y) = 0

⇐⇒ z ≤ ¬¬(¬x ∨ ¬y)

⇐⇒ z ≤ ¬x ∨ ¬y,

from which the equality follows. Hence both De Morgan’s laws, the law of double
negation and the law of excluded middle all hold in a Boolean algebra. Boolean
algebras therefore provide a suitable language for classical logic. We conclude
our discussion of Boolean and Heyting algebras with a canonical example of a
Boolean algebra.

Example 3.13. Let X be a set. Then the power set P(X) ordered by inclusion
is a Boolean algebra under intersection and union, with 0 = ∅ and 1 = X. As in
Example 3.8, by (3.5) it follows that the implication U ⇒ V is U c ∪ V . It then
follows by taking V = ∅ that negation is the set-theoretic complement. Since the
complement of a complement is the identity, P(X) is indeed a Boolean algebra.

3.2 Logic in a topos

We would like to apply the discussion of the previous section to define a ‘logic’ an
arbitrary category. We ask, how much of the poset, lattice and Heyting algebra
structure still makes sense for subobjects rather than subsets? It turns out that
‘posets’ can always be formed, but in order to get a lattice we need more structure
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that provided by an arbitrary category. We will thus focus on toposes, which are
meant to generalise the category of sets and functions. Surprisingly, the algebra
that emerges from a topos is not in general Boolean, but rather a Heyting algebra.
The topos Set is thus special in the sense that it gives rise to a Boolean algebra,
as described below.

Let C be a category and C an object of C. Let Sub(C) be the category whose
objects are all subobjects of C and morphisms all monics between the subobjects
(as maps in C/C). We can then define a partial order on Sub(C) by letting m ≤ n
if and only if there exists a monic from m to n. This is one of the motivations to
define a subobject as an isomorphism class of monics, had we defined a subobject
simply as a monic, this definition would yield a preorder rather than an order.
Now, however, m ≤ n ≤ m implies that m and n are isomorphic and thus belong
to the same subobject. The category Sub(C) is often called the poset of subobjects
of C, although it may well be a partially ordered proper class.

The poset of subobjects gives us a way to define the image of a morphism in
a general category.

Definition 3.14. (Image) Let f : D → C be a morphism in a category C. An
image of f is a subobject m ∈ Sub(C) such that f = me for some e, and whenever
f = m′e′ for some m′ ∈ Sub(C), then m ≤ m′.

Hence an image m is the smallest subobject of the codomain C through which
f factors. Note that although the definition of an image makes sense in a general
category, the image is not guaranteed to exist. As one anticipates for definitions
via universal properties, the image is unique up to an isomorphism if it exists.
Moreover, in any topos the image always exists, and the map e for which f = me
is an epimorphism (see Proposition 1 in section IV.6 in Mac Lane and Moerdijk
[6, p. 185]). In particular, in Set this definition of an image reduces to that of
an image of a function.

Although the construction of Sub(C) makes sense in any category, it is by
no means guaranteed to have a lattice structure. If, however, the category we
start with is a topos, Sub(C) is always a lattice, whose infimum and supremum
operations we will now construct. For the rest of this section, let E be a topos
with subobject classifier (Ω, t).

Definition 3.15. (Conjunction) Conjunction

S : Ω× Ω→ Ω

in E is the characteristic morphism of the product of two true maps, t× t : 1→
Ω× Ω.

It is worth writing this definition out in detail. The product morphism t×t :
1 → Ω × Ω is certainly monic, hence by the definition of subobject classifier
(Definition 1.8), there is a unique morphism χt×t : Ω × Ω → Ω such that the
diagram
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1 Ω× Ω
t×t //

1
��

Ω
t //

χt×t

��

is a pullback. We thus define S := χt×t. This definition is motivated by the
case where E = Set and Ω = 2 = {0, 1}. Then the product map t × t ‘picks’
the element (1, 1) from Ω×Ω, and so the characteristic function sends (1, 1) to 1
(true) and everything else to 0 (false), which is precisely the classical truth table
for conjunction.

Definition 3.16. (Disjunction) Let f : Ω q Ω → Ω × Ω be the unique map
induced by t × idΩ : Ω → Ω × Ω and idΩ × t : Ω → Ω × Ω. We then define
disjunction

N : Ω× Ω→ Ω

in E as the the characteristic morphism of the image of f .

Again, let us write this definition in more detail. Firstly, we have the following
coproduct diagram.

Ω× Ω

Ω

__

t×idΩ

Ω

??

idΩ×t

Ωq Ω oo

Π

2//

Π

1

f

OO

Here Π

1 and Π

2 are the relevant coprojection maps. Next, f factors as

Ωq Ω Ω× Ω
f //

im f

e

�� �� CC

m

CC

where m is a monic. Hence, by the definition of the subobject classifier, there is
a unique morphism χm : Ω× Ω→ Ω such that the diagram

im f Ω× Ω
m //

1
��

Ω
t //

χm

��

is a pullback. The disjunction is thus defined as N := χm. The motivation for
this rather convoluted definition is, again, that it reduces to the usual disjunction
in the topos of sets and functions. Indeed, if Ω = 2, then t × idΩ is the map
1 7→ (1, 1) and 0 7→ (1, 0). Similarly, idΩ × t maps 1 7→ (1, 1) and 0 7→ (0, 1).
Hence im f = {(1, 1); (1, 0); (0, 1)}, and so N = χm maps (0, 0) ∈ Ω × Ω \ im f
to 0 (false) and everything else to 1 (true), as one would expect disjunction to
behave.
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Definition 3.17. (Conditional) Let e :©≤ → Ω × Ω be the equaliser of S and
π1 as in the diagram

Ω× Ω
e // Ω

//

π1

//©≤ S ,

where π1 is the first projection map. The conditional

Z⇒: Ω× Ω→ Ω

in E is the characteristic morphism of e.

Once more, it is easy to see that in Set this coincides with the usual notion
of the conditional. The equaliser of S and π1 is the set

©≤ = {(0, 0); (0, 1); (1, 1)} ⊆ 2× 2

with e being the inclusion, thus the characteristic function of©≤ reproduces the
truth table for the conditional. Note that in this case the set©≤ can be described
as all those pairs whose first component is below (or equal to) the second one,
explaining the notation used (which is adapted from Goldblatt [2, ch. 6.6]).

Thus far, we have generalised the familiar logical operators to the subobject
of an arbitrary topos. In order to define a lattice structure on the poset of
subobjects, we will next pull back the conjunction, disjunction and conditional
morphisms from the subobject classifier to the poset. We follow the presentation
of Goldblatt [2, ch. 7]. Fix an object C of E , and let m : A→ C and n : B → C
be subobjects of C.

Intersection The intersection of n and m is the subobject

n ∧m : A ∧B → C

which is the pullback of t along χmSχn := S ◦ (χm × χn). In other words, the
characteristic morphism of m∧n is χm∧n = χmSχn, as in the left diagram below.

Union Analogously to the intersection, the union is the subobject

n ∨m : A ∨B → C

which is the pullback of t along χmNχn := N◦(χm×χn). Hence χm∨n = χmNχn,
as in the middle diagram.

Implication The implication

n⇒ m : A⇒ B → C

is the pullback of t along χm Z⇒ χn := Z⇒ ◦(χm × χn). Hence χm⇒n = χm Z⇒ χn,
as in the right diagram.
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A ∧B C
m∧n //

1
��

Ω
t //

χmSχn

��

A ∨B C
m∨n //

1
��

Ω
t //

χmNχn

��

A⇒ B C
m⇒n //

1
��

Ω
t //

χm Z⇒χn

��

The following result will be very useful in all subsequent discussion.

Lemma 3.18. Let m : A→ C and n : B → C be subobjects of C in some topos,
and let

D B
m∗ //

A

n∗

��
C

m //

n

��

α

��

(3.19)

be their pullback, where α = nm∗ = mn∗. Then α = m ∧ n, so that D ∼= A ∧B.

Proof. We claim that then the inner square in the diagram

D C
α //

1
��

Ω× Ω
t×t //

χm×χn

��

X f

$$

g

��

k

��

Ω
πi //

is also a pullback. Here πi is the projection map for component i = 1, 2.
Let f and g be some maps as in the diagram such that the outer square

commutes (although for g there is, of course, no choice). Since π1◦(χm×χn) = χm,
this implies that χmf = tg. Now, since the square defining χm is a pullback
(Definition 1.8), there is a unique map u : X → A such that f = mu. Similarly,
using the second projection map, we get a unique map u′ : X → B such that
f = nu′; hence in particular we have mu = nu′. Since (3.19) is a pullback,
there is a unique map k : X → D such that u′ = m∗k and u = n∗k, whence
αk = nm∗k = nu′ = f . Uniqueness of such map follows since α is a monic.
Hence the inner square in the above diagram is indeed a pullback.

It follows that in the diagram below, both smaller squares are pullbacks; the
lower one is just the definition of S.

D C
α //

1
��

Ω× Ω
t×t //

χm×χn

��

1
��

Ω
t //

S
��
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By the pullback lemma 1.6, the outer rectangle is also a pullback. Hence, by
the definition of characteristic morphisms, χα = S ◦ (χm × χn) = χmSχn. By
uniqueness of characteristic morphisms, we conclude that α belongs to the same
subobject with m ∧ n.

Theorem 3.20. Let E be a topos. Then (Sub(C),≤,∧,∨) is a bounded lattice
for any C ∈ E. The bottom object is 0C : 0→ C, the unique map from the initial
object of E into C. The top object is idC .

Proof. Since by Proposition 1.5 a pullback of a monic is monic, it follows by
Lemma 3.18 that m ∧ n ≤ m and m ∧ n ≤ n. The second property of the
infimum, that is, k ≤ m and k ≤ n imply k ≤ m ∧ n for all m,n, k ∈ Sub(C),
follows from the fact that (3.19) is a pullback if we take D = A∧B. Universality
of the square then guarantees existence of a monic from k to m ∧ n.

The proof that ∨ is the lattice supremum is rather lengthy and requires a
technical result, we therefore refer the reader to Theorem 1 in section 7.2 in
Goldblatt [2, p. 151] for the proof.

Boundedness of the lattice follows immediately from observing that the monics
0C and idC are initial and terminal in Sub(C), respectively.

In order to prove that Sub(C) is a Heyting algebra, we will need the following
results, which are Lemma 1 and its corollary in section 7.5 in Goldblatt [2, p. 163].

Lemma 3.21. Let m,n, k ∈ Sub(C) in some topos. Then

m ∧ k = n ∧ k if and only if χmk = χnk.

Proof. We have the following commutative diagrams.

A ∧D D
m∗ //

A

k∗

��
C

m //

k

��

m∧k

""

1
��

Ω
t //

χm

��

B ∧D D
n′ //

B

k′

��
C

n //

k

��

n∧k

""

1
��

Ω
t //

χn

��

The upper squares are pullbacks by Lemma 3.18 and the lower ones by definition
of the subobject classifier. Hence by the pullback lemma 1.6, the outer rectangles
are also pullbacks. By uniqueness of characteristic functions, we thus have χm∗ =
χmk and χn′ = χnk. Hence χmk = χnk if and only if m∗ = n′ as subobjects of C.
Since k is a monic, this is equivalent to km∗ = kn′, that is, m ∧ k = n ∧ k.

Corollary 3.22. For m,n, k ∈ Sub(C),

k ∧m ≤ n if and only if χmk = χm∧nk.
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Proof. We have k ∧m ≤ n if and only if k ∧m ∧ n = k ∧m, which by the above
lemma is equivalent to χmk = χm∧nk.

Theorem 3.23. (Theorem 1.(1) in [2, 7.5 p. 164]) The lattice as defined in
Theorem 3.20 is a Heyting algebra, with implication given by ⇒ as defined on
page 34.

Proof. Let m : A → C and n : B → C be subobjects of C. We will show that
condition (3.5) holds, that is, for any subobject k : D → C we have

k ∧m ≤ n if and only if k ≤ m⇒ n.

Consider the diagram,

A⇒ B C
m⇒n //

©≤
��

Ω× Ω
e //

χm×χn

��

1
��

Ω
t //

Z⇒

��

Ω
//

π1

//
S

where the middle row is the equaliser in the definition of conditional (Definition
3.17), and the bottom square is a pullback by the same definition. Now the outer
rectangle is a pullback by the definition of implication ⇒. Since the bottom
square is a pullback, the dotted arrow making the top square commute exists
(and is unique). It follows by the pullback lemma 1.6 that the top square is a
pullback.

Now k ≤ m ⇒ n if and only if there is a monic u : D → A ⇒ B such that
(m ⇒ n) ◦ u = k. Since the top square is a pullback, this happens if and only
if there is a map f : D → ©≤ such that ef = (χm × χn) ◦ k. By the universal
property of the equaliser (Definition 1.1), such map exists if and only if

π1 ◦ (χm × χn) ◦ k = S ◦ (χm × χn) ◦ k.

Since π1 ◦ (χm × χn) = χm and S ◦ (χm × χn) = χm∧n, this is equivalent to

χmk = χm∧nk,

which by Corollary 3.22 is equivalent to k ∧m ≤ n.

Theorem 3.23 allows us to apply the discussion on Heyting algebras in the
previous section to Sub(C) in any topos. In particular, it shows that we have
implicitly defined the negation ¬m = m⇒ 0C , for a subobject m of C. However,
m ⇒ 0C is defined as a pullback of t along χm Z⇒ χ0C , which is itself defined
in terms of Z⇒, the characteristic morphism of the equaliser of S and a projec-
tion map. This convoluted definition of negation is somewhat unsatisfactory, as
negation is perhaps the simplest logical operation, and our intuition suggests that
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this should not result in such a complicated notion in a topos. More importantly,
this definition tells us absolutely nothing about what negation does. The next
proposition addresses these two issues in a particular case.

Proposition 3.24. Let (Ω, t) be a subobject classifier in some topos. Then ¬t =
f, where f is the map false and t is viewed as a subobject of Ω.

Proof. Since in any Heyting algebra t ∧ ¬t = 0Ω, by Lemma 3.18 we have the
pullback diagram.

0 1⇒ 0
t∗ //

1
��

Ω
t //

¬t

��

t∧¬t

$$

Observe that if we show that 1⇒ 0 ∼= 1, then uniqueness of the characteristic map
and definition of false will yield the desired result, ¬t = f. Suppose therefore,
that there is a map k : 1→ 1⇒ 0, which is necessarily monic as its domain is a
terminal object. It follows that ¬tk is a subobject of Ω with ¬tk ≤ ¬t, which
by (3.7) implies t ∧ (¬tk) = 0Ω. Then, again by Lemma 3.18, the diagram

0 1//

1
��

Ω
t //

¬tk

��

t∧(¬tk)

$$

is a pullback. But then ¬tk is nothing but the characteristic function of 01 : 0→
1, which by definition is the map false.

Hence, since ¬t is a monic, we have shown that if there is a map from 1 to
1⇒ 0, then it is unique. To see that there is such a map, note that t ∧ f = 0Ω,
which by (3.7) implies that f ≤ ¬t, whence existence follows. Since 1 is terminal,
there is also a unique map from 1⇒ 0 to 1. Uniqueness of these two maps implies
they must be mutually inverse, and so indeed 1⇒ 0 ∼= 1.

It is important to note that Sub(C) is not itself an object in the topos E . We
are thus taking an ‘outside’ perspective when considering this lattice structure.
For this reason, Sub(C) is called an external Heyting algebra (of subobjects of
C). However, Golblatt invites us to think of a topos (and of a category in gen-
eral) as “a universe for a particular kind of mathematical discourse” [2, p. 1].
Hence, although all standard set-theoretic constructions exist in any topos, dif-
ferent toposes give rise to different results about these structures. It is therefore
of interest to know what kind of statements are true internally, within that par-
ticular discourse.

In the category of sets, an internal equivalent of the lattice of subobjects is
the collection of maps from a set S to the subobject classifier Ω = 2, which
corresponds to the power set of S. This generalises to an arbitrary topos by
replacing the collection of maps with the exponential. As opposed to Sub(C),
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the exponential ΩC is an object in any topos and any object C. The internal
lattice structure is then given by symmetric, associative maps

∧,∨ : ΩC × ΩC → ΩC

‘satisfying’ the equations defining a lattice (3.3) in the sense that they make the
corresponding diagrams commute. Similarly, one can define implication in purely
equational and hence diagrammatic terms.

For details on distinction between internal and external algebras and logic, see
section 7.4 in Goldblatt [2], and for construction of an internal Heyting algebra
see section IV.8 in Mac Lane and Moerdijk [6]. We have, in fact, defined an
internal Heyting algebra on the subobject classifier Ω ∼= Ω1 given by (S,N, Z⇒).

We say that a topos is Boolean if the Heyting algebra of subobjects of any
object in the topos is in fact a Boolean algebra. We illustrate that there is a strong
connection between internal and external algebras with the following result.

Proposition 3.25. Let E be a topos with subobject classifier Ω. Then E is Boolean
if and only if Ω ∼= Ω1 is an internal Boolean algebra.

The proof of this fact can be found in Proposition 1 in section VI.1 in Mac
Lane and Moerdijk [6, p. 270].

3.3 The algebra of sheaves

The main aim of this section is to construct a subobject classifier for sheaves. We
begin by quoting two important results.

Theorem 3.26. The category of presheaves PSh(X) is a topos for any topological
space X.

This follows from a more general fact that for any small category C, the functor
category SetC

op

is a topos. Existence of finite limits in such category follows from
the fact that limits are taken ‘pointwise’, meaning that the limit of each functor
F can be defined in terms of limits of its components F (U) in Set for each
U ∈ Cop. Then, since Set has finite limits, so does the functor category. To see
how exponentials can be constructed, see section I.6 in Mac Lane and Moerdijk
[6], in particular the proof of Proposition 1 on page 46. For construction of the
subobject classifier, we once again refer the reader to Mac Lane and Moerdijk,
section I.4 [6, p. 37].

Proposition 3.27. The category of sheaves Sh(X) has all finite limits, and
exponentials for any pair of objects.

Existence of finite limits is Proposition 2 in section II.2 [6, p. 71], while Propo-
sition 1 in section II.8 [6, p. 97] guarantees that the exponential of presheaves F P

is in fact a sheaf whenever F is a sheaf, both in Mac Lane and Moerdijk.
Since the category of presheaves is a topos, we expect the sheaves to form a

topos as well. In fact, the by Proposition 3.27 sheaves are almost a sheaf, we
are only missing the subobject classifier. We will next reverse engineer what a
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subobject classifier should look like in Sh(X), and then prove that it indeed is
one.

We begin by noting that the presheaf sending each open set of X to the one
element set 1 is terminal in PSh(X), let us denote it by 1. Then 1 is rather
trivially a sheaf. Next, suppose (Ω, t) is a subobject classifier for Sh(X). That
is, Ω is a sheaf and t is a natural transformation t : 1 → Ω. Suppose further
that η : F → G is a natural transformation of sheaves F and G which is monic,
that is, η is a subobject of G. Let U, V ∈ O(X) such that U ⊆ V . We then have
a commutative diagram.

F (V ) G(V )
ηV //

F (U)
��

G(U)
ηU //

��

1(U)
��

Ω(U)
tU //

χηU

��

1(V ) Ω(V )
tV //

OO

χηV

��

The unlabeled maps in the top and bottom squares are the restrictions, in the
middle square the unlabeled map is the unique function from F (U) to the one
element set. Hence for each open subset U ⊆ V , the map tU picks an element in
Ω(U) such that χηU (ηU(q)) is equal to that element for each q ∈ F (U). Moreover,
this is done in a consistent way, so that (χηV (s)) |U = χηU (s|U) for each s ∈ G(V ).

We thus have a family of sections (χηV (s)) |U for U ∈ O(V ) which agree on
the overlaps of the open subsets of V . Since Ω is a sheaf, there is a unique section
r ∈ Ω(V ) such that r|U = χηU (s|U), and we must have tV = χηV (s) = r whenever
s ∈ im ηV , for s ∈ G(V ). Notice that, by a slight abuse of notation, we identify
the map from the one-element set with its value at the unique element of the set.
Similarly, r|U = tU whenever s|U ∈ im ηU . Since we can repeat this process for
any open set of V , we get a poset structure on Ω(V ) corresponding one-to-one
with O(V ).

These observations suggest that we define Ω(V ) as the set of all open sets of
V . The restriction Ω(V )→ Ω(U) is then given by the intersection (S)|U = S∩U .
Since the truth map tV picks the maximal element of the lattice for each open
V , we have tV = V . It follows that for a subobject η : F → G, the characteristic
morphism χηV : G(V )→ Ω(V ) is

χηV (s) =

{⋃
i

Ui : Ui ∈ O(V ) such that s|Ui ∈ im ηUi

}
. (3.28)

Note that if s ∈ im ηV , then the union in the above definition necessarily becomes
all of V , and so we indeed have χηV (s) = tV = V .
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Lemma 3.29. The presheaf Ω sending each open set V to its set of open sets is
a sheaf.

Proof. Let Vi ⊆ V be a family of open sets such that
⋃
i Vi = V . Let Ui ⊆ Vi

be a family of open sets such that Ui’s agree on the intersections of Vi’s, that is,
Ui ∩ Vj = Uj ∩ Vi for all i and j. Then

Vi ∩
⋃
j

Uj =
⋃
j

Vi ∩ Uj =
⋃
j

Vj ∩ Ui = V ∩ Ui = Ui

for all i. Since
⋃
j Uj is the unique such set, Ω is indeed a sheaf.

Theorem 3.30. The sheaf Ω as in Lemma 3.29 is a subobject classifier for
Sh(X), with the truth map t : 1→ Ω given by tV = V .

Proof. Let η : F → G be a monic natural transformation of sheaves. We claim
that the characteristic morphism of η is given by χη : G→ Ω as defined in 3.28.
To see this, consider the pullback of t : 1→ Ω along χη. Hence for each open set
V we have the pullback diagram,

S(V ) G(V )
t∗V //

1(V )
��

Ω(V )
tV //

χηV

��

where S(V ) is the subset of G(V ) so that for each s ∈ S(V ) we have χηV (s) =
tV = V and t∗V is the inclusion. But χηV (s) = V means the open sets Ui in 3.28
cover V , and so s|Ui glue together to form a unique global section in G(V ) which
restricts to s|Ui for each i. By uniqueness, this section must be s, and since each
s|Ui ∈ im ηUi , we must have s ∈ ηV . When constructing χη we already observed
that s ∈ ηV implies χηV (s) = V . We have thus shown that S(V ) = im ηV , and
so t∗ and η belong to the same subobject.

It remains to show uniqueness of the characteristic map. But if we take
t∗V = ηV in the above diagram and require the square to be a pullback, uniqueness
then follows by the discussion preceding Lemma 3.29, as after fixing Ω(V ) to be
the set of open sets we had no choice in defining χηV . Hence Ω is indeed a
subobject classifier for Sh(X).

Corollary 3.31. The category Sh(X) is a topos for any topological space X.

By the results of the previous section, the lattice of subobjects Sub(G) is a
Heyting algebra for any sheaf G on a topological space X. This gives us another
perspective on sheaves, whereas in Chapter 2 sheaves were viewed as a special kind
of functors, the results of this chapter suggest that sheaves have some interesting
set-like properties with their own logic and internal structure. This prompts a
question; to what extent does this analogy hold? It turns out that, in some sense,
the topos of sheaves is quite different from Set. One manifestation of this is that
Sub(G) is in general not Boolean. To see this, take X = (−1, 1) as in Example
3.8 and take G = Ω, the subobject classifier for Sh(X). Then every subobject of
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Ω can be identified with an open subset of X, and so Sub(Ω) is the poset of open
sets of X. By example 3.8, this algebra is not Boolean.

Since the algebra of sheaves is in general not Boolean, there is a connection
between sheaf theory and intuitionistic logic, and with constructivist mathematics
more generally. For more details on this, see Chapter 8 in Goldblatt [2].

We conclude our discussion by providing a necessary and sufficient condition
for the topos Sh(X) to be Boolean.

Proposition 3.32. The topos of sheaves Sh(X) is Boolean if and only if open
and closed sets of X coincide.

Proof. By Proposition 3.25, it is equivalent to show that Ω is an internal Boolean
algebra if and only if open and closed sets of X coincide. But Ω is a Boolean
algebra if and only if every element of Ω(X) has a complement. Since elements
of Ω(X) are open subsets of X, this happens if and only if the (set-theoretic)
complement U c of every open subset U is also open, that is, every open set is
closed. The last condition says that a set is open if and only if it is closed.



Epilogue

We have scratched the surface of sheaf and topos theories, paving the road for
future studies. We first introduced sheaves as particular kind of functors useful
for distinguishing local and global properties. After this we proved that sheaves
can be described in purely topological terms as étale bundles. We then took a
step back to introduce Boolean and Heyting algebras. We discovered that the
former corresponds to our idea of a classical logic, while the latter arises for any
topos. We concluded with showing that the algebra of subobjects of a sheaf on a
topological space is in general not Boolean.

Since we took two related but distinct perspectives on sheaves, there are at
least two possible directions for further development. The very last observation,
that is the fact that the topos of sheaves in not Boolean, suggests there is a con-
nection between sheaf theory and intuitionistic logic, leading to the question what
role do sheaves play in constructivist mathematics and mathematical logic in gen-
eral. It indeed turns out many results in mathematical logic can be reformulated
using sheaf theory. This line of development is taken, for instance, in Chapter VI
in Mac Lane and Moerdijk [6], where inter alia it is shown that the continuum
hypothesis and the axiom of choice are independent of the Zermelo-Frænkel set
theory axioms using methods from sheaf theory.

As remarked when introducing presheaves, there is a more general notion
of a presheaf which does not need to be a presheaf on a topological space. The
definition of a sheaf depended, however, on the set-like structure of the underlying
space, allowing us to talk about subsets, unions and intersections, as well as on
the topology of the space, allowing us to talk about open sets. Thus in order to
generalise the notion of a sheaf, something more is needed that just an arbitrary
category. This ‘something more’ turns out to be a generalisation of a topological
space; indeed there is a way to define a ‘topology’ on a category rather than
on a set. This is called a Grothendieck topology, and a category equipped with
a Grothendieck topology is called a site. Presheaves and sheaves can then be
defined similarly to those on an ordinary topological space. This is developed in
detail in Chapter III in Mac Lane and Moerdijk [6].

Finally, a natural question to ask is whether there is a notion of a map be-
tween sheaves on different sites or topological spaces. In the case of sheaves on
topological spaces, we have no choice, as a continuous map between topological
spaces induces a pair of adjoint functors between the corresponding categories of
sheaves. This is then taken as the definition of a map between sheaves on sites.
The map is called a geometric morphism, and is introduced in Chapter VII in
Mac Lane and Moerdijk [6].

43
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One of the objectives set at the beginning of this work was to understand the
precise way in which sheaves distinguish local and global properties. We have
certainly been successful in achieving this aim. More than that, by studying
Heyting algebras of a topos, and by learning that sheaves are in fact a topos, we
have revealed that sheaves have a rich structure of their own. We have attempted
to shed some light on reasons why sheaves have connections to logic and set
theory; in doing so, we have hopefully convinced the reader that sheaves are
more general than either of these fields, forming a universe worth exploring in its
own right.
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